Produced by Norm Wolcott, Gregory Margo and PG Distributed Proofreaders
THE MOON-VOYAGE.
CONTAINING
“FROM THE EARTH TO THE MOON,”
AND
“ROUND THE MOON.”
BY
JULES VERNE,
AUTHOR OF “TWENTY THOUSAND LEAGUES UNDER THE SEA,” “AMONG THE CANNIBALS,” ETC.
ILLUSTRATED BY HENRY AUSTIN.
* * * * *
CONTENTS.
“FROM THE EARTH TO THE MOON.”
I. THE GUN CLUB
II. PRESIDENT BARBICANE’S COMMUNICATION
III. EFFECT OF PRESIDENT BARBICANE’S COMMUNICATION
IV. ANSWER FROM THE CAMBRIDGE OBSERVATORY
V. THE ROMANCE OF THE MOON
VI. WHAT IT IS IMPOSSIBLE TO IGNORE AND WHAT IS NO LONGER ALLOWED TO BE BELIEVED IN THE UNITED STATES
VII. THE HYMN OF THE CANNON-BALL
VIII. HISTORY OF THE CANNON
IX. THE QUESTION OF POWDERS
X. ONE ENEMY AGAINST TWENTY-FIVE MILLIONS OF FRIENDS
XI. FLORIDA AND TEXAS
XII. “URBI ET ORBI”
XIII. STONY HILL
XIV. PICKAXE AND TROWEL
XV. THE CEREMONY OF THE CASTING
XVI. THE COLUMBIAD
XVII. A TELEGRAM
XVIII. THE PASSENGER OF THE ATLANTA
XIX. A MEETING
XX. THRUST AND PARRY
XXI. HOW A FRENCHMAN SETTLES AN AFFAIR
XXII. THE NEW CITIZEN OF THE UNITED STATES
XXIII. THE PROJECTILE COMPARTMENT
XXIV. THE TELESCOPE OF THE ROCKY MOUNTAINS
XXV. FINAL DETAILS
XXVI. FIRE
XXVII. CLOUDY WEATHER
XXVIII. A NEW STAR
* * * * *
“ROUND THE MOON.”
PRELIMINARY CHAPTER. CONTAINING A SHORT ACCOUNT OF THE FIRST PART OF THIS WORK TO SERVE AS PREFACE TO THE SECOND
I. FROM 10.20 P.M. TO 10.47 P.M.
II. THE FIRST HALF-HOUR
III. TAKING POSSESSION
IV. A LITTLE ALGEBRA
V. THE TEMPERATURE OF SPACE
VI. QUESTIONS AND ANSWERS
VII. A MOMENT OF INTOXICATION
VIII. AT SEVENTY-EIGHT THOUSAND ONE HUNDRED AND FOURTEEN LEAGUES
IX. THE CONSEQUENCES OF DEVIATION
X. THE OBSERVERS OF THE MOON
XI. IMAGINATION AND REALITY
XII. OROGRAPHICAL DETAILS
XIII. LUNAR LANDSCAPES
XIV. A NIGHT OF THREE HUNDRED AND FIFTY-FOUR HOURS AND A HALF
XV. HYPERBOLA OR PARABOLA
XVI. THE SOUTHERN HEMISPHERE
XVII. TYCHO
XVIII. GRAVE QUESTIONS
XIX. A STRUGGLE WITH THE IMPOSSIBLE
XX. THE SOUNDINGS OF THE SUSQUEHANNA
XXI. J.T. MASTON CALLED IN
XXII. PICKED UP
XXIII. THE END
* * * * *
FROM THE EARTH TO THE MOON.
* * * * *
CHAPTER I.
THE GUN CLUB.
During the Federal war in the United States a new and very influential club was established in the city of Baltimore, Maryland. It is well known with what energy the military instinct was developed amongst that nation of shipowners, shopkeepers, and mechanics. Mere tradesmen jumped their counters to become extempore captains, colonels, and generals without having passed the Military School at West Point; they soon rivalled their colleagues of the old continent, and, like them, gained victories by dint of lavishing bullets, millions, and men.
But where Americans singularly surpassed Europeans was in the science of ballistics, or of throwing massive weapons by the use of an engine; not that their arms attained a higher degree of perfection, but they were of unusual dimensions, and consequently of hitherto unknown ranges. The English, French, and Prussians have nothing to learn about flank, running, enfilading, or point-blank firing; but their cannon, howitzers, and mortars are mere pocket-pistols compared with the formidable engines of American artillery.
This fact ought to astonish no one. The Yankees, the first mechanicians in the world, are born engineers, just as Italians are musicians and Germans metaphysicians. Thence nothing more natural than to see them bring their audacious ingenuity to bear on the science of ballistics. Hence those gigantic cannon, much less useful than sewing-machines, but quite as astonishing, and much more admired. The marvels of this style by Parrott, Dahlgren, and Rodman are well known. There was nothing left the Armstrongs, Pallisers, and Treuille de Beaulieux but to bow before their transatlantic rivals.
Therefore during the terrible struggle between Northerners and Southerners, artillerymen were in great request; the Union newspapers published their inventions with enthusiasm, and there was no little tradesman nor _naif_ “booby” who did not bother his head day and night with calculations about impossible trajectory engines.
Now when an American has an idea he seeks another American to share it. If they are three, they elect a president and two secretaries. Given four, they elect a clerk, and a company is established. Five convoke a general meeting, and the club is formed. It thus happened at Baltimore. The first man who invented a new cannon took into partnership the first man who cast it and the first man that bored it. Such was the nucleus of the Gun Club. One month after its formation it numbered eighteen hundred and thirty-three effective members, and thirty thousand five hundred and seventy-five corresponding members.
One condition was imposed as a _sine qua non_ upon every one who wished to become a member–that of having invented, or at least perfected, a cannon; or, in default of a cannon, a firearm of some sort. But, to tell the truth, mere inventors of fifteen-barrelled rifles, revolvers, or sword-pistols did not enjoy much consideration. Artillerymen were always preferred to them in every circumstance.
“The estimation in which they are held,” said one day a learned orator of the Gun Club, “is in proportion to the size of their cannon, and in direct ratio to the square of distance attained by their projectiles!”
A little more and it would have been Newton’s law of gravitation applied to moral order.
Once the Gun Club founded, it can be easily imagined its effect upon the inventive genius of the Americans. War-engines took colossal proportions, and projectiles launched beyond permitted distances cut inoffensive pedestrians to pieces. All these inventions left the timid instruments of European artillery far behind them. This may be estimated by the following figures:–
Formerly, “in the good old times,” a thirty-six pounder, at a distance of three hundred feet, would cut up thirty-six horses, attacked in flank, and sixty-eight men. The art was then in its infancy. Projectiles have since made their way. The Rodman gun that sent a projectile weighing half a ton a distance of seven miles could easily have cut up a hundred and fifty horses and three hundred men. There was some talk at the Gun Club of making a solemn experiment with it. But if the horses consented to play their part, the men unfortunately were wanting.
However that may be, the effect of these cannon was very deadly, and at each discharge the combatants fell like ears before a scythe. After such projectiles what signified the famous ball which, at Coutras, in 1587, disabled twenty-five men; and the one which, at Zorndorff, in 1758, killed forty fantassins; and in 1742, Kesseldorf’s Austrian cannon, of which every shot levelled seventy enemies with the ground? What was the astonishing firing at Jena or Austerlitz, which decided the fate of the battle? During the Federal war much more wonderful things had been seen. At the battle of Gettysburg, a conical projectile thrown by a rifle-barrel cut up a hundred and seventy-three Confederates, and at the passage of the Potomac a Rodman ball sent two hundred and fifteen Southerners into an evidently better world. A formidable mortar must also be mentioned, invented by J.T. Maston, a distinguished member and perpetual secretary of the Gun Club, the result of which was far more deadly, seeing that, at its trial shot, it killed three hundred and thirty-seven persons–by bursting, it is true.
What can be added to these figures, so eloquent in themselves? Nothing. So the following calculation obtained by the statistician Pitcairn will be admitted without contestation: by dividing the number of victims fallen under the projectiles by that of the members of the Gun Club, he found that each one of them had killed, on his own account, an average of two thousand three hundred and seventy-five men and a fraction.
By considering such a result it will be seen that the single preoccupation of this learned society was the destruction of humanity philanthropically, and the perfecting of firearms considered as instruments of civilisation. It was a company of Exterminating Angels, at bottom the best fellows in the world.
It must be added that these Yankees, brave as they have ever proved themselves, did not confine themselves to formulae, but sacrificed themselves to their theories. Amongst them might be counted officers of every rank, those who had just made their _debut_ in the profession of arms, and those who had grown old on their gun-carriage. Many whose names figured in the book of honour of the Gun Club remained on the field of battle, and of those who came back the greater part bore marks of their indisputable valour. Crutches, wooden legs, articulated arms, hands with hooks, gutta-percha jaws, silver craniums, platinum noses, nothing was wanting to the collection; and the above-mentioned Pitcairn likewise calculated that in the Gun Club there was not quite one arm amongst every four persons, and only two legs amongst six.
But these valiant artillerymen paid little heed to such small matters, and felt justly proud when the report of a battle stated the number of victims at tenfold the quantity of projectiles expended.
One day, however, a sad and lamentable day, peace was signed by the survivors of the war, the noise of firing gradually ceased, the mortars were silent, the howitzers were muzzled for long enough, and the cannon, with muzzles depressed, were stored in the arsenals, the shots were piled up in the parks, the bloody reminiscences were effaced, cotton shrubs grew magnificently on the well-manured fields, mourning garments began to be worn-out, as well as sorrow, and the Gun Club had nothing whatever to do.
Certain old hands, inveterate workers, still went on with their calculations in ballistics; they still imagined gigantic bombs and unparalleled howitzers. But what was the use of vain theories that could not be put in practice? So the saloons were deserted, the servants slept in the antechambers, the newspapers grew mouldy on the tables, from dark corners issued sad snores, and the members of the Gun Club, formerly so noisy, now reduced to silence by the disastrous peace, slept the sleep of Platonic artillery!
“This is distressing,” said brave Tom Hunter, whilst his wooden legs were carbonising at the fireplace of the smoking-room. “Nothing to do! Nothing to look forward to! What a tiresome existence! Where is the time when cannon awoke you every morning with its joyful reports?”
“That time is over,” answered dandy Bilsby, trying to stretch the arms he had lost. “There was some fun then! You invented an howitzer, and it was hardly cast before you ran to try it on the enemy; then you went back to the camp with an encouragement from Sherman, or a shake of the hands from MacClellan! But now the generals have gone back to their counters, and instead of cannon-balls they expedite inoffensive cotton bales! Ah, by Saint Barb! the future of artillery is lost to America!”
“Yes, Bilsby,” cried Colonel Blomsberry, “it is too bad! One fine morning you leave your tranquil occupations, you are drilled in the use of arms, you leave Baltimore for the battle-field, you conduct yourself like a hero, and in two years, three years at the latest, you are obliged to leave the fruit of so many fatigues, to go to sleep in deplorable idleness, and keep your hands in your pockets.”
The valiant colonel would have found it very difficult to give such a proof of his want of occupation, though it was not the pockets that were wanting.
“And no war in prospect, then,” said the famous J.T. Maston, scratching his gutta-percha cranium with his steel hook; “there is not a cloud on the horizon now that there is so much to do in the science of artillery! I myself finished this very morning a diagram with plan, basin, and elevation of a mortar destined to change the laws of warfare!”
“Indeed!” replied Tom Hunter, thinking involuntarily of the Honourable J.T. Maston’s last essay.
“Indeed!” answered Maston. “But what is the use of the good results of such studies and so many difficulties conquered? It is mere waste of time. The people of the New World seem determined to live in peace, and our bellicose _Tribune_ has gone as far as to predict approaching catastrophes due to the scandalous increase of population!”
“Yet, Maston,” said Colonel Blomsberry, “they are always fighting in Europe to maintain the principle of nationalities!”
“What of that?”
“Why, there might be something to do over there, and if they accepted our services–“
“What are you thinking of?” cried Bilsby. “Work at ballistics for the benefit of foreigners!”
“Perhaps that would be better than not doing it at all,” answered the colonel.
“Doubtless,” said J.T. Maston, “it would be better, but such an expedient cannot be thought of.”
“Why so?” asked the colonel.
“Because their ideas of advancement would be contrary to all our American customs. Those folks seem to think that you cannot be a general-in-chief without having served as second lieutenant, which comes to the same as saying that no one can point a gun that has not cast one. Now that is simply–“
“Absurd!” replied Tom Hunter, whittling the arms of his chair with his bowie-knife; “and as things are so, there is nothing left for us but to plant tobacco or distil whale-oil!”
“What!” shouted J.T. Maston, “shall we not employ these last years of our existence in perfecting firearms? Will not a fresh opportunity present itself to try the ranges of our projectiles? Will the atmosphere be no longer illuminated by the lightning of our cannons? Won’t some international difficulty crop up that will allow us to declare war against some transatlantic power? Won’t France run down one of our steamers, or won’t England, in defiance of the rights of nations, hang up three or four of our countrymen?”
“No, Maston,” answered Colonel Blomsberry; “no such luck! No, not one of those incidents will happen; and if one did, it would be of no use to us. American sensitiveness is declining daily, and we are going to the dogs!”
“Yes, we are growing quite humble,” replied Bilsby.
“And we are humiliated!” answered Tom Hunter.
“All that is only too true,” replied J.T. Maston, with fresh vehemence. “There are a thousand reasons for fighting floating about, and still we don’t fight! We economise legs and arms, and that to the profit of folks that don’t know what to do with them. Look here, without looking any farther for a motive for war, did not North America formerly belong to the English?”
“Doubtless,” answered Tom Hunter, angrily poking the fire with the end of his crutch.
“Well,” replied J.T. Maston, “why should not England in its turn belong to the Americans?”
“It would be but justice,” answered Colonel Blomsberry.
“Go and propose that to the President of the United States,” cried J.T. Maston, “and see what sort of a reception you would get.”
“It would not be a bad reception,” murmured Bilsby between the four teeth he had saved from battle.
“I’faith,” cried J.T. Maston, “they need not count upon my vote in the next elections.”
“Nor upon ours,” answered with common accord these bellicose invalids.
“In the meantime,” continued J.T. Maston, “and to conclude, if they do not furnish me with the opportunity of trying my new mortar on a real battle-field, I shall send in my resignation as member of the Gun Club, and I shall go and bury myself in the backwoods of Arkansas.”
“We will follow you there,” answered the interlocutors of the enterprising J.T. Maston.
Things had come to that pass, and the club, getting more excited, was menaced with approaching dissolution, when an unexpected event came to prevent so regrettable a catastrophe.
The very day after the foregoing conversation each member of the club received a circular couched in these terms:–
“Baltimore, October 3rd.
“The president of the Gun Club has the honour to inform his colleagues that at the meeting on the 5th ultimo he will make them a communication of an extremely interesting nature. He therefore begs that they, to the suspension of all other business, will attend, in accordance with the present invitation,
“Their devoted colleague,
“IMPEY BARBICANE, P.G.C.”
CHAPTER II.
PRESIDENT BARBICANE’S COMMUNICATION.
On the 5th of October, at 8 p.m., a dense crowd pressed into the saloons of the Gun Club, 21, Union-square. All the members of the club residing at Baltimore had gone on the invitation of their president. The express brought corresponding members by hundreds, and if the meeting-hall had not been so large, the crowd of _savants_ could not have found room in it; they overflowed into the neighbouring rooms, down the passages, and even into the courtyards; there they ran against the populace who were pressing against the doors, each trying to get into the front rank, all eager to learn the important communication of President Barbicane, all pressing, squeezing, crushing with that liberty of action peculiar to the masses brought up in the idea of self-government.
That evening any stranger who might have chanced to be in Baltimore could not have obtained a place at any price in the large hall; it was exclusively reserved to residing or corresponding members; no one else was admitted; and the city magnates, common councillors, and select men were compelled to mingle with their inferiors in order to catch stray news from the interior.
The immense hall presented a curious spectacle; it was marvellously adapted to the purpose for which it was built. Lofty pillars formed of cannon, superposed upon huge mortars as a base, supported the fine ironwork of the arches–real cast-iron lacework.
Trophies of blunderbusses, matchlocks, arquebuses, carbines, all sorts of ancient or modern firearms, were picturesquely enlaced against the walls. The gas, in full flame, came out of a thousand revolvers grouped in the form of lustres, whilst candlesticks of pistols, and candelabra made of guns done up in sheaves, completed this display of light. Models of cannons, specimens of bronze, targets spotted with shot-marks, plaques broken by the shock of the Gun Club, balls, assortments of rammers and sponges, chaplets of shells, necklaces of projectiles, garlands of howitzers–in a word, all the tools of the artilleryman surprised the eyes by their wonderful arrangement, and induced a belief that their real purpose was more ornamental than deadly.
In the place of honour was seen, covered by a splendid glass case, a piece of breech, broken and twisted under the effort of the powder–a precious fragment of J.T. Maston’s cannon.
At the extremity of the hall the president, assisted by four secretaries, occupied a wide platform. His chair, placed on a carved gun-carriage, was modelled upon the powerful proportions of a 32-inch mortar; it was pointed at an angle of 90 degs., and hung upon trunnions so that the president could use it as a rocking-chair, very agreeable in great heat. Upon the desk, a huge iron plate, supported upon six carronades, stood a very tasteful inkstand, made of a beautifully-chased Spanish piece, and a report-bell, which, when required, went off like a revolver. During the vehement discussions this new sort of bell scarcely sufficed to cover the voices of this legion of excited artillerymen.
In front of the desk, benches, arranged in zigzags, like the circumvallations of intrenchment, formed a succession of bastions and curtains where the members of the Gun Club took their seats; and that evening, it may be said, there were plenty on the ramparts. The president was sufficiently known for all to be assured that he would not have called together his colleagues without a very great motive.
Impey Barbicane was a man of forty, calm, cold, austere, of a singularly serious and concentrated mind, as exact as a chronometer, of an imperturbable temperament and immovable character; not very chivalrous, yet adventurous, and always bringing practical ideas to bear on the wildest enterprises; an essential New-Englander, a Northern colonist, the descendant of those Roundheads so fatal to the Stuarts, and the implacable enemy of the Southern gentlemen, the ancient cavaliers of the mother country–in a word, a Yankee cast in a single mould.
Barbicane had made a great fortune as a timber-merchant; named director of artillery during the war, he showed himself fertile in inventions; enterprising in his ideas, he contributed powerfully to the progress of ballistics, gave an immense impetus to experimental researches.
He was a person of average height, having, by a rare exception in the Gun Club, all his limbs intact. His strongly-marked features seemed to be drawn by square and rule, and if it be true that in order to guess the instincts of a man one must look at his profile, Barbicane seen thus offered the most certain indications of energy, audacity, and _sang-froid_.
At that moment he remained motionless in his chair, mute, absorbed, with an inward look sheltered under his tall hat, a cylinder of black silk, which seems screwed down upon the skull of American men.
His colleagues talked noisily around him without disturbing him; they questioned one another, launched into the field of suppositions, examined their president, and tried, but in vain, to make out the _x_ of his imperturbable physiognomy.
Just as eight o’clock struck from the fulminating clock of the large hall, Barbicane, as if moved by a spring, jumped up; a general silence ensued, and the orator, in a slightly emphatic tone, spoke as follows:–
“Brave colleagues,–It is some time since an unfruitful peace plunged the members of the Gun Club into deplorable inactivity. After a period of some years, so full of incidents, we have been obliged to abandon our works and stop short on the road of progress. I do not fear to proclaim aloud that any war which would put arms in our hands again would be welcome–“
“Yes, war!” cried impetuous J.T. Maston.
“Hear, hear!” was heard on every side.
“But war,” said Barbicane, “war is impossible under actual circumstances, and, whatever my honourable interrupter may hope, long years will elapse before our cannons thunder on a field of battle. We must, therefore, make up our minds to it, and seek in another order of ideas food for the activity by which we are devoured.”
The assembly felt that its president was coming to the delicate point; it redoubled its attention.
“A few months ago, my brave colleagues,” continued Barbicane, “I asked myself if, whilst still remaining in our speciality, we could not undertake some grand experiment worthy of the nineteenth century, and if the progress of ballistics would not allow us to execute it with success. I have therefore sought, worked, calculated, and the conviction has resulted from my studies that we must succeed in an enterprise that would seem impracticable in any other country. This project, elaborated at length, will form the subject of my communication; it is worthy of you, worthy of the Gun Club’s past history, and cannot fail to make a noise in the world!”
“Much noise?” cried a passionate artilleryman.
“Much noise in the true sense of the word,” answered Barbicane.
“Don’t interrupt!” repeated several voices.
“I therefore beg of you, my brave colleagues,” resumed the president, “to grant me all your attention.”
A shudder ran through the assembly. Barbicane, having with a rapid gesture firmly fixed his hat on his head, continued his speech in a calm tone:–
“There is not one of you, brave colleagues, who has not seen the moon, or, at least, heard of It. Do not be astonished if I wish to speak to you about the Queen of Night. It is, perhaps, our lot to be the Columbuses of this unknown world. Understand me, and second me as much as you can, I will lead you to its conquest, and its name shall be joined to those of the thirty-six States that form the grand country of the Union!”
“Hurrah for the moon!” cried the Gun Club with one voice.
“The moon has been much studied,” resumed Barbicane; “its mass, density, weight, volume, constitution, movements, distance, the part it plays in the solar world, are all perfectly determined; selenographic maps have been drawn with a perfection that equals, if it does not surpass, those of terrestrial maps; photography has given to our satellite proofs of incomparable beauty–in a word, all that the sciences of mathematics, astronomy, geology, and optics can teach is known about the moon; but until now no direct communication with it has ever been established.”
A violent movement of interest and surprise welcomed this sentence of the orator.
“Allow me,” he resumed, “to recall to you in few words how certain ardent minds, embarked upon imaginary journeys, pretended to have penetrated the secrets of our satellite. In the seventeenth century a certain David Fabricius boasted of having seen the inhabitants of the moon with his own eyes. In 1649 a Frenchman, Jean Baudoin, published his _Journey to the Moon by Dominique Gonzales, Spanish Adventurer_. At the same epoch Cyrano de Bergerac published the celebrated expedition that had so much success in France. Later on, another Frenchman (that nation took a great deal of notice of the moon), named Fontenelle, wrote his _Plurality of Worlds_, a masterpiece of his time; but science in its progress crushes even masterpieces! About 1835, a pamphlet, translated from the _New York American_, related that Sir John Herschel, sent to the Cape of Good Hope, there to make astronomical observations, had, by means of a telescope, perfected by interior lighting, brought the moon to within a distance of eighty yards. Then he distinctly perceived caverns in which lived hippopotami, green mountains with golden borders, sheep with ivory horns, white deer, and inhabitants with membraneous wings like those of bats. This treatise, the work of an American named Locke, had a very great success. But it was soon found out that it was a scientific mystification, and Frenchmen were the first to laugh at it.”
“Laugh at an American!” cried J.T. Maston; “but that’s a _casus belli_!”
“Be comforted, my worthy friend; before Frenchmen laughed they were completely taken in by our countryman. To terminate this rapid history, I may add that a certain Hans Pfaal, of Rotterdam, went up in a balloon filled with a gas made from azote, thirty-seven times lighter than hydrogen, and reached the moon after a journey of nineteen days. This journey, like the preceding attempts, was purely imaginary, but it was the work of a popular American writer of a strange and contemplative genius. I have named Edgar Poe!”
“Hurrah for Edgar Poe!” cried the assembly, electrified by the words of the president.
“I have now come to an end of these attempts which I may call purely literary, and quite insufficient to establish any serious communications with the Queen of Night. However, I ought to add that some practical minds tried to put themselves into serious communication with her. Some years ago a German mathematician proposed to send a commission of _savants_ to the steppes of Siberia. There, on the vast plains, immense geometrical figures were to be traced by means of luminous reflectors; amongst others, the square of the hypothenuse, vulgarly called the ‘Ass’s Bridge.’ ‘Any intelligent being,’ said the mathematician, ‘ought to understand the scientific destination of that figure. The Selenites (inhabitants of the moon), if they exist, will answer by a similar figure, and, communication once established, it will be easy to create an alphabet that will allow us to hold converse with the inhabitants of the moon.’ Thus spoke the German mathematician, but his project was not put into execution, and until now no direct communication has existed between the earth and her satellite. But it was reserved to the practical genius of Americans to put itself into communication with the sidereal world. The means of doing so are simple, easy, certain, unfailing, and will make the subject of my proposition.”
A hubbub and tempest of exclamations welcomed these words. There was not one of the audience who was not dominated and carried away by the words of the orator.
“Hear, hear! Silence!” was heard on all sides.
When the agitation was calmed down Barbicane resumed, in a graver tone, his interrupted speech.
“You know,” said he, “what progress the science of ballistics has made during the last few years, and to what degree of perfection firearms would have been brought if the war had gone on. You are not ignorant in general that the power of resistance of cannons and the expansive force of powder are unlimited. Well, starting from that principle, I asked myself if, by means of sufficient apparatus, established under determined conditions of resistance, it would not be possible to send a cannon-ball to the moon!”
At these words an “Oh!” of stupefaction escaped from a thousand panting breasts; then occurred a moment of silence, like the profound calm that precedes thunder. In fact, the thunder came, but a thunder of applause, cries, and clamour which made the meeting-hall shake again. The president tried to speak; he could not. It was only at the end of ten minutes that he succeeded in making himself heard.
“Let me finish,” he resumed coldly. “I have looked at the question in all its aspects, and from my indisputable calculations it results that any projectile, hurled at an initial speed of twelve thousand yards a second, and directed at the moon, must necessarily reach her. I have, therefore, the honour of proposing to you, my worthy colleagues, the attempting of this little experiment.”
CHAPTER III.
EFFECT OF PRESIDENT BARBICANE’S COMMUNICATION.
It is impossible to depict the effect produced by the last words of the honourable president. What cries! what vociferations! What a succession of groans, hurrahs, cheers, and all the onomatopoeia of which the American language is so full. It was an indescribable hubbub and disorder. Mouths, hands, and feet made as much noise as they could. All the weapons in this artillery museum going off at once would not have more violently agitated the waves of sound. That is not surprising; there are cannoneers nearly as noisy as their cannons.
Barbicane remained calm amidst these enthusiastic clamours; perhaps he again wished to address some words to his colleagues, for his gestures asked for silence, and his fulminating bell exhausted itself in violent detonations; it was not even heard. He was soon dragged from his chair, carried in triumph, and from the hands of his faithful comrades he passed into those of the no less excited crowd.
Nothing can astonish an American. It has often been repeated that the word “impossible” is not French; the wrong dictionary must have been taken by mistake. In America everything is easy, everything is simple, and as to mechanical difficulties, they are dead before they are born. Between the Barbicane project and its realisation not one true Yankee would have allowed himself to see even the appearance of a difficulty. As soon said as done.
The triumphant march of the president was prolonged during the evening. A veritable torchlight procession–Irish, Germans, Frenchmen, Scotchmen–all the heterogeneous individuals that compose the population of Maryland–shouted in their maternal tongue, and the cheering was unanimous.
Precisely as if she knew it was all about her, the moon shone out then with serene magnificence, eclipsing other lights with her intense irradiation. All the Yankees directed their eyes towards the shining disc; some saluted her with their hands, others called her by the sweetest names; between eight o’clock and midnight an optician in Jones-Fall-street made a fortune by selling field-glasses. The Queen of Night was looked at through them like a lady of high life. The Americans acted in regard to her with the freedom of proprietors. It seemed as if the blonde Phoebe belonged to these enterprising conquerors and already formed part of the Union territory. And yet the only question was that of sending a projectile–a rather brutal way of entering into communication even with a satellite, but much in vogue amongst civilised nations.
Midnight had just struck, and the enthusiasm did not diminish; it was kept up in equal doses in all classes of the population; magistrates, _savants_, merchants, tradesmen, street-porters, intelligent as well as “green” men were moved even in their most delicate fibres. It was a national enterprise; the high town, low town, the quays bathed by the waters of the Patapsco, the ships, imprisoned in their docks, overflowed with crowds intoxicated with joy, gin, and whisky; everybody talked, argued, perorated, disputed, approved, and applauded, from the gentleman comfortably stretched on the bar-room couch before his glass of “sherry-cobbler” to the waterman who got drunk upon “knock-me-down” in the dark taverns of Fell’s Point.
However, about 2 a.m. the emotion became calmer. President Barbicane succeeded in getting home almost knocked to pieces. A Hercules could not have resisted such enthusiasm. The crowd gradually abandoned the squares and streets. The four railroads of Ohio, Susquehanna, Philadelphia, and Washington, which converge at Baltimore, took the heterogeneous population to the four corners of the United States, and the town reposed in a relative tranquillity.
It would be an error to believe that during this memorable evening Baltimore alone was agitated. The large towns of the Union, New York, Boston, Albany, Washington, Richmond, New Orleans, Charlestown, La Mobile of Texas, Massachusetts, Michigan, and Florida, all shared in the delirium. The thirty thousand correspondents of the Gun Club were acquainted with their president’s letter, and awaited with equal impatience the famous communication of the 5th of October. The same evening as the orator uttered his speech it ran along the telegraph wires, across the states of the Union, with a speed of 348,447 miles a second. It may, therefore, be said with absolute certainty that at the same moment the United States of America, ten times as large as France, cheered with a single voice, and twenty-five millions of hearts, swollen with pride, beat with the same pulsation.
The next day five hundred daily, weekly, monthly, or bi-monthly newspapers took up the question; they examined it under its different aspects–physical, meteorological, economical, or moral, from a political or social point of view. They debated whether the moon was a finished world, or if she was not still undergoing transformation. Did she resemble the earth in the time when the atmosphere did not yet exist? What kind of spectacle would her hidden hemisphere present to our terrestrial spheroid? Granting that the question at present was simply about sending a projectile to the Queen of Night, every one saw in that the starting-point of a series of experiments; all hoped that one day America would penetrate the last secrets of the mysterious orb, and some even seemed to fear that her conquest would disturb the balance of power in Europe.
The project once under discussion, not one of the papers suggested a doubt of its realisation; all the papers, treatises, bulletins, and magazines published by scientific, literary, or religious societies enlarged upon its advantages, and the “Natural History Society” of Boston, the “Science and Art Society” of Albany, the “Geographical and Statistical Society” of New York, the “American Philosophical Society” of Philadelphia, and the “Smithsonian Institution” of Washington sent in a thousand letters their congratulations to the Gun Club, with immediate offers of service and money.
It may be said that no proposition ever had so many adherents; there was no question of hesitations, doubts, or anxieties. As to the jokes, caricatures, and comic songs that would have welcomed in Europe, and, above all, in France, the idea of sending a projectile to the moon, they would have been turned against their author; all the “life-preservers” in the world would have been powerless to guarantee him against the general indignation. There are things that are not to be laughed at in the New World.
Impey Barbicane became from that day one of the greatest citizens of the United States, something like a Washington of science, and one fact amongst several will serve to show the sudden homage which was paid by a nation to one man.
Some days after the famous meeting of the Gun Club the manager of an English company announced at the Baltimore Theatre a representation of _Much Ado About Nothing_, but the population of the town, seeing in the title a damaging allusion to the projects of President Barbicane, invaded the theatre, broke the seats, and forced the unfortunate manager to change the play. Like a sensible man, the manager, bowing to public opinion, replaced the offending comedy by _As You Like It_, and for several weeks he had fabulous houses.
CHAPTER IV.
ANSWER FROM THE CAMBRIDGE OBSERVATORY.
In the meantime Barbicane did not lose an instant amidst the enthusiasm of which he was the object. His first care was to call together his colleagues in the board-room of the Gun Club. There, after a debate, they agreed to consult astronomers about the astronomical part of their enterprise. Their answer once known, they would then discuss the mechanical means, and nothing would be neglected to assure the success of their great experiment.
A note in precise terms, containing special questions, was drawn up and addressed to the observatory of Cambridge in Massachusetts. This town, where the first University of the United States was founded, is justly celebrated for its astronomical staff. There are assembled the greatest men of science; there is the powerful telescope which enabled Bond to resolve the nebula of Andromeda and Clarke to discover the satellite of Sirius. This celebrated institution was, therefore, worthy in every way of the confidence of the Gun Club.
After two days the answer, impatiently awaited, reached the hands of President Barbicane.
It ran as follows:–
“_The Director of the Cambridge Observatory to the President of the Gun Club at Baltimore_.
“On the receipt of your favour of the 6th inst., addressed to the Observatory of Cambridge in the name of the members of the Baltimore Gun Club, we immediately called a meeting of our staff, who have deemed it expedient to answer as follows:–
“The questions proposed to it were these:–
“‘1. Is it possible to send a projectile to the moon?
“‘2. What is the exact distance that separates the earth and her satellite?
“‘3. What would be the duration of the projectile’s transit to which a sufficient initial speed had been given, and consequently at what moment should it be hurled so as to reach the moon at a particular point?
“‘4. At what moment would the moon present the most favourable position for being reached by the projectile?
“‘5. What point in the heavens ought the cannon, destined to hurl the projectile, be aimed at?
“‘6. What place in the heavens will the moon occupy at the moment when the projectile will start?’
“Regarding question No. 1, ‘Is it possible to send a projectile to the moon?’
“Yes, it is possible to send a projectile to the moon if it is given an initial velocity of 1,200 yards a second. Calculations prove that this speed is sufficient. In proportion to the distance from the earth the force of gravitation diminishes in an inverse ratio to the square of the distance–that is to say, that for a distance three times greater that force is nine times less. In consequence, the weight of the projectile will decrease rapidly, and will end by being completely annulled at the moment when the attraction of the moon will be equal to that of the earth–that is to say, at the 47/52 of the distance. At that moment the projectile will have no weight at all, and if it clears that point it will fall on to the moon only by the effect of lunar gravitation. The theoretic possibility of the experiment is, therefore, quite demonstrated; as to its success, that depends solely in the power of the engine employed.
“Regarding question No. 2, ‘What is the exact distance that separates the earth from her satellite?’
“The moon does not describe a circle round the earth, but an ellipse, of which our earth occupies one of the foci; the consequence is, therefore, that at certain times it approaches nearer to, and at others recedes farther from, the earth, or, in astronomical language, it has its apogee and its perigee. At its apogee the moon is at 247,552 miles from the earth, and at its perigee at 218,657 miles only, which makes a difference of 28,895, or more than a ninth of the distance. The perigee distance is, therefore, the one that should give us the basis of all calculations.
“Regarding question No. 3, ‘What would be the duration of the projectile’s transit to which a sufficient initial speed has been given, and consequently at what moment should it be hurled so as to reach the moon at a particular point?’
“If the projectile kept indefinitely the initial speed of 12,000 yards a second, it would only take about nine hours to reach its destination; but as that initial velocity will go on decreasing, it will happen, everything calculated upon, that the projectile will take 300,000 seconds, or 83 hours and 20 minutes, to reach the point where the terrestrial and lunar gravitations are equal, and from that point it will fall upon the moon in 50,000 seconds, or 13 hours, 53 minutes, and 20 seconds. It must, therefore, be hurled 97 hours, 13 minutes, and 20 seconds before the arrival of the moon at the point aimed at.
“Regarding question No. 4, ‘At what moment would the moon present the most favourable position for being reached by the projectile?’
“According to what has been said above the epoch of the moon’s perigee must first be chosen, and at the moment when she will be crossing her zenith, which will still further diminish the entire distance by a length equal to the terrestrial radius–i.e., 3,919 miles; consequently, the passage to be accomplished will be 214,976 miles. But the moon is not always at her zenith when she reaches her perigee, which is once a month. She is only under the two conditions simultaneously at long intervals of time. This coincidence of perigee and zenith must be waited for. It happens fortunately that on December 4th of next year the moon will offer these two conditions; at midnight she will be at her perigee and her zenith–that is to say, at her shortest distance from the earth and at her zenith at the same time.
“Regarding question No. 5, ‘At what point in the heavens ought the cannon destined to hurl the projectile be aimed?’
“The preceding observations being admitted, the cannon ought to be aimed at the zenith of the place (the zenith is the spot situated vertically above the head of a spectator), so that its range will be perpendicular to the plane of the horizon, and the projectile will pass the soonest beyond the range of terrestrial gravitation. But for the moon to reach the zenith of a place that place must not exceed in latitude the declination of the luminary–in other words, it must be comprised between 0 deg. and 28 deg. of north or south latitude. In any other place the range must necessarily be oblique, which would seriously affect the success of the experiment.
“Regarding question No. 6, ‘What place will the moon occupy In the heavens at the moment of the projectile’s departure?’
“At the moment when the projectile is hurled into space, the moon, which travels forward 13 deg. 10′ 35″ each day, will be four times as distant from her zenith point–i.e., by 52 deg. 42′ 20”, a space which corresponds to the distance she will travel during the transit of the projectile. But as the deviation which the rotatory movement of the earth will impart to the shock must also be taken into account, and as the projectile cannot reach the moon until after a deviation equal to sixteen radii of the earth, which, calculated upon the moon’s orbit, is equal to about 11 deg., it is necessary to add these 11 deg. to those caused by the already-mentioned delay of the moon, or, in round numbers, 64 deg.. Thus, at the moment of firing, the visual radius applied to the moon will describe with the vertical line of the place an angle of 64 deg..
“Such are the answers to the questions proposed to the Observatory of Cambridge by the members of the Gun Club.
“To sum up–
“1st. The cannon must be placed in a country situated between 0 deg. and 28 deg. of north or south latitude.
“2nd. It must be aimed at the zenith of the place.
“3rd. The projectile must have an initial speed of 12,000 yards a second.
“4th. It must be hurled on December 1st of next year, at 10hrs. 46mins. 40secs. p.m.
“5th. It will meet the moon four days after its departure on December 4th, at midnight precisely, at the moment she arrives at her zenith.
“The members of the Gun Club ought, therefore, at once to commence the labour necessitated by such an enterprise, and be ready to put them into execution at the moment fixed upon, for they will not find the moon in the same conditions of perigee and zenith till eighteen years and eleven days later.
“The staff of the Observatory of Cambridge puts itself entirely at their disposition for questions of theoretic astronomy, and begs to join its congratulations to those of the whole of America.
“On behalf of the staff,
“J.M. BELFAST,
“_Director of the Observatory of Cambridge_.”
CHAPTER V.
THE ROMANCE OF THE MOON.
A spectator endowed with infinite power of sight, and placed at the unknown centre round which gravitates the universe, would have seen myriads of atoms filling all space during the chaotic epoch of creation. But by degrees, as centuries went on, a change took place; a law of gravitation manifested itself which the wandering atoms obeyed; these atoms, combined chemically according to their affinities, formed themselves into molecules, and made those nebulous masses with which the depths of the heavens are strewed.
These masses were immediately animated by a movement of rotation round their central point. This centre, made of vague molecules, began to turn on itself whilst progressively condensing; then, following the immutable laws of mechanics, in proportion as its volume became diminished by condensation its movement of rotation was accelerated, and these two effects persisting, there resulted a principal planet, the centre of the nebulous mass.
By watching attentively the spectator would then have seen other molecules in the mass behave like the central planet, and condense in the same manner by a movement of progressively-accelerated rotation, and gravitate round it under the form of innumerable stars. The nebulae, of which astronomers count nearly 5,000 at present, were formed.
Amongst these 5,000 nebulae there is one that men have called the Milky Way, and which contains eighteen millions of stars, each of which has become the centre of a solar world.
If the spectator had then specially examined amongst these eighteen millions of stars one of the most modest and least brilliant, a star of the fourth order, the one that proudly named itself the sun, all the phenomena to which the formation of the universe is due would have successively taken place under his eyes.
In fact, he would have perceived this sun still in its gaseous state, and composed of mobile molecules; he would have perceived it turning on its own axis to finish its work of concentration. This movement, faithful to the laws of mechanics, would have been accelerated by the diminution of volume, and a time would have come when the centrifugal force would have overpowered the centripetal, which causes the molecules all to tend towards the centre.
Then another phenomenon would have passed before the eyes of the spectator, and the molecules situated in the plane of the equator would have formed several concentric rings like that of Saturn round the sun. In their turn these rings of cosmic matter, seized with a movement of rotation round the central mass, would have been broken up into secondary nebulae–that is to say, into planets.
If the spectator had then concentrated all his attention on these planets he would have seen them behave exactly like the sun and give birth to one or more cosmic rings, origin of those secondary bodies which we call satellites.
Thus in going up from the atom to the molecule, from the molecule to the nebulae, and from the nebulae to the principal star, from the principal star to the sun, from the sun to the planet, and from the planet to the satellite, we have the whole series of transformations undergone by the celestial powers from the first days of the universe.
The sun seems lost amidst the immensities of the stellar universe, and yet it is related, by actual theories of science, to the nebula of the Milky Way. Centre of a world, and small as it appears amidst the ethereal regions, it is still enormous, for its size is 1,400,000 times that of the earth. Around it gravitate eight planets, struck off from its own mass in the first days of creation. These are, in proceeding from the nearest to the most distant, Mercury, Venus, the Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Between Mars and Jupiter circulate regularly other smaller bodies, the wandering _debris_, perhaps, of a star broken up into thousands of pieces, of which the telescope has discovered eighty-two at present. Some of these asteroids are so small that they could be walked round in a single day by going at a gymnastic pace.
Of these attendant bodies which the sun maintains in their elliptical orbit by the great law of gravitation, some possess satellites of their own. Uranus has eight, Saturn eight, Jupiter four, Neptune three perhaps, and the Earth one; this latter, one of the least important of the solar world, is called the Moon, and it is that one that the enterprising genius of the Americans means to conquer.
The Queen of Night, from her relative proximity and the spectacle rapidly renewed of her different phases, at first divided the attention of the inhabitants of the earth with the sun; but the sun tires the eyesight, and the splendour of its light forces its admirers to lower their eyes.
The blonde Phoebe, more humane, graciously allows herself to be seen in her modest grace; she is gentle to the eye, not ambitious, and yet she sometimes eclipses her brother the radiant Apollo, without ever being eclipsed by him. The Mahommedans understood what gratitude they owed to this faithful friend of the earth, and they ruled their months at 29-1/2 days on her revolution.
The first people of the world dedicated particular worship to this chaste goddess. The Egyptians called her Isis, the Phoenicians Astarte, the Greeks Phoebe, daughter of Jupiter and Latona, and they explained her eclipses by the mysterious visits of Diana and the handsome Endymion. The mythological legend relates that the Nemean lion traversed the country of the moon before its apparition upon earth, and the poet Agesianax, quoted by Plutarch, celebrated in his sweet lines its soft eyes, charming nose, and admirable mouth, formed by the luminous parts of the adorable Selene.
But though the ancients understood the character, temperament, and, in a word, moral qualities of the moon from a mythological point of view, the most learned amongst them remained very ignorant of selenography.
Several astronomers, however, of ancient times discovered certain particulars now confirmed by science. Though the Arcadians pretended they had inhabited the earth at an epoch before the moon existed, though Simplicius believed her immovable and fastened to the crystal vault, though Tacitus looked upon her as a fragment broken off from the solar orbit, and Clearch, the disciple of Aristotle, made of her a polished mirror upon which were reflected the images of the ocean–though, in short, others only saw in her a mass of vapours exhaled by the earth, or a globe half fire and half ice that turned on itself, other _savants_, by means of wise observations and without optical instruments, suspected most of the laws that govern the Queen of Night.
Thus Thales of Miletus, B.C. 460, gave out the opinion that the moon was lighted up by the sun. Aristarchus of Samos gave the right explanation of her phases. Cleomenus taught that she shone by reflected light. Berose the Chaldean discovered that the duration of her movement of rotation was equal to that of her movement of revolution, and he thus explained why the moon always presented the same side. Lastly, Hipparchus, 200 years before the Christian era, discovered some inequalities in the apparent movements of the earth’s satellite.
These different observations were afterwards confirmed, and other astronomers profited by them. Ptolemy in the second century, and the Arabian Aboul Wefa in the tenth, completed the remarks of Hipparchus on the inequalities that the moon undergoes whilst following the undulating line of its orbit under the action of the sun. Then Copernicus, in the fifteenth century, and Tycho Brahe, in the sixteenth, completely exposed the system of the world and the part that the moon plays amongst the celestial bodies.
At that epoch her movements were pretty well known, but very little of her physical constitution was known. It was then that Galileo explained the phenomena of light produced in certain phases by the existence of mountains, to which he gave an average height of 27,000 feet.
After him, Hevelius, an astronomer of Dantzig, lowered the highest altitudes to 15,000 feet; but his contemporary, Riccioli, brought them up again to 21,000 feet.
Herschel, at the end of the eighteenth century, armed with a powerful telescope, considerably reduced the preceding measurements. He gave a height of 11,400 feet to the highest mountains, and brought down the average of different heights to little more than 2,400 feet. But Herschel was mistaken too, and the observations of Schroeter, Louville, Halley, Nasmyth, Bianchini, Pastorff, Lohrman, Gruithuysen, and especially the patient studies of MM. Boeer and Moedler, were necessary to definitely resolve the question. Thanks to these _savants_, the elevation of the mountains of the moon is now perfectly known. Boeer and Moedler measured 1,905 different elevations, of which six exceed 15,000 feet and twenty-two exceed 14,400 feet. Their highest summit towers to a height of 22,606 feet above the surface of the lunar disc.
At the same time the survey of the moon was being completed; she appeared riddled with craters, and her essentially volcanic nature was affirmed by each observation. From the absence of refraction in the rays of the planets occulted by her it is concluded that she can have no atmosphere. This absence of air entails absence of water; it therefore became manifest that the Selenites, in order to live under such conditions, must have a special organisation, and differ singularly from the inhabitants of the earth.
Lastly, thanks to new methods, more perfected instruments searched the moon without intermission, leaving not a point of her surface unexplored, and yet her diameter measures 2,150 miles; her surface is one-thirteenth of the surface of the globe, and her volume one-forty-ninth of the volume of the terrestrial spheroid; but none of her secrets could escape the astronomers’ eyes, and these clever _savants_ carried their wonderful observations still further.
Thus they remarked that when the moon was at her full the disc appeared in certain places striped with white lines, and during her phases striped with black lines. By prosecuting the study of these with greater precision they succeeded in making out the exact nature of these lines. They are long and narrow furrows sunk between parallel ridges, bordering generally upon the edges of the craters; their length varied from ten to one hundred miles, and their width was about 1,600 yards. Astronomers called them furrows, and that was all they could do; they could not ascertain whether they were the dried-up beds of ancient rivers or not. The Americans hope, some day or other, to determine this geological question. They also undertake to reconnoitre the series of parallel ramparts discovered on the surface of the moon by Gruithuysen, a learned professor of Munich, who considered them to be a system of elevated fortifications raised by Selenite engineers. These two still obscure points, and doubtless many others, can only be definitely settled by direct communication with the moon.
As to the intensity of her light there is nothing more to be learnt; it is 300,000 times weaker than that of the sun, and its heat has no appreciable action upon thermometers; as to the phenomenon known as the “ashy light,” it is naturally explained by the effect of the sun’s rays transmitted from the earth to the moon, and which seem to complete the lunar disc when it presents a crescent form during its first and last phases.
Such was the state of knowledge acquired respecting the earth’s satellite which the Gun Club undertook to perfect under all its aspects, cosmographical, geographical, geological, political, and moral.
CHAPTER VI.
WHAT IT IS IMPOSSIBLE TO IGNORE AND WHAT IS NO LONGER ALLOWED TO BE BELIEVED IN THE UNITED STATES.
The immediate effect of Barbicane’s proposition was that of bringing out all astronomical facts relative to the Queen of Night. Everybody began to study her assiduously. It seemed as if the moon had appeared on the horizon for the first time, and that no one had ever seen her in the sky before. She became the fashion; she was the lion of the day, without appearing less modest on that account, and took her place amongst the “stars” without being any the prouder. The newspapers revived old anecdotes in which this “Sun of the wolves” played a part; they recalled the influence which the ignorance of past ages had ascribed to her; they sang about her in every tone; a little more and they would have quoted her witty sayings; the whole of America was filled with selenomania.
The scientific journals treated the question which touched upon the enterprise of the Gun Club more specially; they published the letter from the Observatory of Cambridge, they commented upon it and approved of it without reserve.
In short, even the most ignorant Yankee was no longer allowed to be ignorant of a single fact relative to his satellite, nor, to the oldest women amongst them, to have any superstitions about her left. Science flooded them; it penetrated into their eyes and ears; it was impossible to be an ass–in astronomy.
Until then many people did not know how the distance between the earth and the moon had been calculated. This fact was taken advantage of to explain to them that it was done by measuring the parallax of the moon. If the word “parallax” seemed new to them, they were told it was the angle formed by two straight lines drawn from either extremity of the earth’s radius to the moon. If they were in doubt about the perfection of this method, it was immediately proved to them that not only was the mean distance 234,347 miles, but that astronomers were right to within seventy miles.
To those who were not familiar with the movements of the moon, the newspapers demonstrated daily that she possesses two distinct movements, the first being that of rotation upon her axis, the second that of revolution round the earth, accomplishing both in the same time–that is to say, in 27-1/3 days.
The movement of rotation is the one that causes night and day on the surface of the moon, only there is but one day and one night in a lunar month, and they each last 354-1/3 hours. But, happily, the face, turned towards the terrestrial globe, is lighted by it with an intensity equal to the light of fourteen moons. As to the other face, the one always invisible, it has naturally 354 hours of absolute night, tempered only by “the pale light that falls from the stars.” This phenomenon is due solely to the peculiarity that the movements of rotation and revolution are accomplished in rigorously equal periods, a phenomenon which, according to Cassini and Herschel, is common to the satellites of Jupiter, and, very probably to the other satellites.
Some well-disposed but rather unyielding minds did not quite understand at first how, if the moon invariably shows the same face to the earth during her revolution, she describes one turn round herself in the same period of time. To such it was answered–“Go into your dining-room, and turn round the table so as always to keep your face towards the centre; when your circular walk is ended you will have described one circle round yourselves, since your eye will have successively traversed every point of the room. Well, then, the room is the heavens, the table is the earth, and you are the moon!”
And they go away delighted with the comparison.
Thus, then, the moon always presents the same face to the earth; still, to be quite exact, it should be added that in consequence of certain fluctuations from north to south and from west to east, called libration, she shows rather more than the half of her disc, about 0.57.
When the ignoramuses knew as much as the director of the Cambridge Observatory about the moon’s movement of rotation they began to make themselves uneasy about her movement of revolution round the earth, and twenty scientific reviews quickly gave them the information they wanted. They then learnt that the firmament, with its infinite stars, may be looked upon as a vast dial upon which the moon moves, indicating the time to all the inhabitants of the earth; that it is in this movement that the Queen of Night shows herself in her different phases, that she is full when she is in opposition with the sun–that is to say, when the three bodies are on a line with each other, the earth being in the centre; that the moon is new when she is in conjunction with the sun–that is to say, when she is between the sun and the earth; lastly, that the moon is in her first or last quarter when she makes, with the sun and the earth, a right angle of which she occupies the apex.
Some perspicacious Yankees inferred in consequence that eclipses could only take place at the periods of conjunction or opposition, and their reasoning was just. In conjunction the moon can eclipse the sun, whilst in opposition it is the earth that can eclipse him in her turn; and the reason these eclipses do not happen twice in a lunar month is because the plane upon which the moon moves is elliptical like that of the earth.
As to the height which the Queen of Night can attain above the horizon, the letter from the Observatory of Cambridge contained all that can be said about it. Every one knew that this height varies according to the latitude of the place where the observation is taken. But the only zones of the globe where the moon reaches her zenith–that is to say, where she is directly above the heads of the spectators–are necessarily comprised between the 28th parallels and the equator. Hence the important recommendation given to attempt the experiment upon some point in this part of the globe, in order that the projectile may be hurled perpendicularly, and may thus more quickly escape the attraction of gravitation. This was a condition essential to the success of the enterprise, and public opinion was much exercised thereupon.
As to the line followed by the moon in her revolution round the earth, the Observatory of Cambridge had demonstrated to the most ignorant that it is an ellipse of which the earth occupies one of the foci. These elliptical orbits are common to all the planets as well as to all the satellites, and rational mechanism rigorously proves that it could not be otherwise. It was clearly understood that when at her apogee the moon was farthest from the earth, and when at her perigee she was nearest to our planet.
This, therefore, was what every American knew whether he wished to or no, and what no one could decently be ignorant of. But if these true principles rapidly made their way, certain illusive fears and many errors were with difficulty cleared away.
Some worthy people maintained, for instance, that the moon was an ancient comet, which, whilst travelling along its elongated orbit round the sun, passed near to the earth, and was retained in her circle of attraction. The drawing-room astronomers pretended to explain thus the burnt aspect of the moon, a misfortune of which they accused the sun. Only when they were told to notice that comets have an atmosphere, and that the moon has little or none, they did not know what to answer.
Others belonging to the class of “Shakers” manifested certain fears about the moon; they had heard that since the observations made in the times of the Caliphs her movement of revolution had accelerated in a certain proportion; they thence very logically concluded that an acceleration of movement must correspond to a diminution in the distance between the two bodies, and that this double effect going on infinitely the moon would one day end by falling into the earth. However, they were obliged to reassure themselves and cease to fear for future generations when they were told that according to the calculations of Laplace, an illustrious French mathematician, this acceleration of movement was restricted within very narrow limits, and that a proportional diminution will follow it. Thus the equilibrium of the solar world cannot be disturbed in future centuries.
Lastly there was the superstitious class of ignoramuses to be dealt with; these are not content with being ignorant; they know what does not exist, and about the moon they know a great deal. Some of them considered her disc to be a polished mirror by means of which people might see themselves from different points on the earth, and communicate their thoughts to one another. Others pretended that out of 1,000 new moons 950 had brought some notable change, such as cataclysms, revolutions, earthquakes, deluges, &c.; they therefore believed in the mysterious influence of the Queen of Night on human destinies; they think that every Selenite is connected by some sympathetic tie with each inhabitant of the earth; they pretend, with Dr. Mead, that she entirely governs the vital system–that boys are born during the new moon and girls during her last quarter, &c., &c. But at last it became necessary to give up these vulgar errors, to come back to truth; and if the moon, stripped of her influence, lost her prestige in the minds of courtesans of every power, if some turned their backs on her, the immense majority were in her favour. As to the Yankees, they had no other ambition than that of taking possession of this new continent of the sky, and to plant upon its highest summit the star-spangled banner of the United States of America.
CHAPTER VII.
THE HYMN OF THE CANNON-BALL.
The Cambridge Observatory had, in its memorable letter of October 7th, treated the question from an astronomical point of view–the mechanical point had still to be treated. It was then that the practical difficulties would have seemed insurmountable to any other country but America; but there they were looked upon as play.
President Barbicane had, without losing any time, nominated a working committee in the heart of the Gun Club. This committee was in three sittings to elucidate the three great questions of the cannon, the projectile, and the powder. It was composed of four members very learned upon these matters. Barbicane had the casting vote, and with him were associated General Morgan, Major Elphinstone, and, lastly, the inevitable J.T. Maston, to whom were confided the functions of secretary.
On the 8th of October the committee met at President Barbicane’s house, No. 3, Republican-street; as it was important that the stomach should not trouble so important a debate, the four members of the Gun Club took their seats at a table covered with sandwiches and teapots. J.T. Maston immediately screwed his pen on to his steel hook and the business began.
Barbicane opened the meeting as follows:–
“Dear colleagues,” said he, “we have to solve one of the more important problems in ballistics–that greatest of sciences which treats of the movement of projectiles–that is to say, of bodies hurled into space by some power of impulsion and then left to themselves.”
“Oh, ballistics, ballistics!” cried J.T. Maston in a voice of emotion.
“Perhaps,” continued Barbicane, “the most logical thing would be to consecrate this first meeting to discussing the engine.”
“Certainly,” answered General Morgan.
“Nevertheless,” continued Barbicane, “after mature deliberation, it seems to me that the question of the projectile ought to precede that of the cannon, and that the dimensions of the latter ought to depend upon the dimensions of the former.”
J.T. Maston here interrupted the president, and was heard with the attention which his magnificent past career deserved.
“My dear friends,” said he in an inspired tone, “our president is right to give the question of the projectile the precedence of every other; the cannon-ball we mean to hurl at the moon will be our messenger, our ambassador, and I ask your permission to regard it from an entirely moral point of view.”
This new way of looking at a projectile excited the curiosity of the members of the committee; they therefore listened attentively to the words of J.T. Maston.
“My dear colleagues,” he continued, “I will be brief. I will lay aside the material projectile–the projectile that kills–in order to take up the mathematical projectile–the moral projectile. A cannon-ball is to me the most brilliant manifestation of human power, and by creating it man has approached nearest to the Creator!”
“Hear, hear!” said Major Elphinstone.
“In fact,” cried the orator, “if God has made the stars and the planets, man has made the cannon-ball–that criterion of terrestrial speed–that reduction of bodies wandering in space which are really nothing but projectiles. Let Providence claim the speed of electricity, light, the stars, comets, planets, satellites, sound, and wind! But ours is the speed of the cannon-ball–a hundred times greater than that of trains and the fastest horses!”
J.T. Maston was inspired; his accents became quite lyrical as he chanted the hymn consecrated to the projectile.
“Would you like figures?” continued he; “here are eloquent ones. Take the simple 24 pounder; though it moves 80,000 times slower than electricity, 64,000 times slower than light, 76 times slower than the earth in her movement of translation round the sun, yet when it leaves the cannon it goes quicker than sound; it goes at the rate of 14 miles a minute, 840 miles an hour, 20,100 miles a day–that is to say, at the speed of the points of the equator in the globe’s movement of rotation, 7,336,500 miles a year. It would therefore take 11 days to get to the moon, 12 years to get to the sun, 360 years to reach Neptune, at the limits of the solar world. That is what this modest cannon-ball, the work of our hands, can do! What will it be, therefore, when, with twenty times that speed, we shall hurl it with a rapidity of seven miles a second? Ah! splendid shot! superb projectile! I like to think you will be received up there with the honours due to a terrestrial ambassador!”
Cheers greeted this brilliant peroration, and J.T. Maston, overcome with emotion, sat down amidst the felicitations of his colleagues.
“And now,” said Barbicane, “that we have given some time to poetry, let us proceed to facts.”
“We are ready,” answered the members of the committee as they each demolished half-a-dozen sandwiches.
“You know what problem it is we have to solve,” continued the president; “it is that of endowing a projectile with a speed of 12,000 yards per second. I have every reason to believe that we shall succeed, but at present let us see what speeds we have already obtained; General Morgan can edify us upon that subject.”
“So much the more easily,” answered the general, “because during the war I was a member of the Experiment Commission. The 100-pound cannon of Dahlgren, with a range of 5,000 yards, gave their projectiles an initial speed of 500 yards a second.”
“Yes; and the Rodman Columbiad?” (the Americans gave the name of “Columbiad” to their enormous engines of destruction) asked the president.
“The Rodman Columbiad, tried at Fort Hamilton, near New York, hurled a projectile, weighing half a ton, a distance of six miles, with a speed of 800 yards a second, a result which neither Armstrong nor Palliser has obtained in England.”
“Englishmen are nowhere!” said J.T. Maston, pointing his formidable steel hook eastward.
“Then,” resumed Barbicane, “a speed of 800 yards is the maximum obtained at present.”
“Yes,” answered Morgan.
“I might add, however,” replied J.T. Maston, “that if my mortar had not been blown up–“
“Yes, but it was blown up,” replied Barbicane with a benevolent gesture. “We must take the speed of 800 yards for a starting point. We must keep till another meeting the discussion of the means used to produce this speed; allow me to call your attention to the dimensions which our projectile must have. Of course it must be something very different to one of half a ton weight.”
“Why?” asked the major.
“Because,” quickly answered J.T. Maston, “it must be large enough to attract the attention of the inhabitants of the moon, supposing there are any.”
“Yes,” answered Barbicane, “and for another reason still more important.”
“What do you mean, Barbicane?” asked the major.
“I mean that it is not enough to send up a projectile and then to think no more about it; we must follow it in its transit.”
“What?” said the general, slightly surprised at the proposition.
“Certainly,” replied Barbicane, like a man who knew what he was saying, “or our experiment will be without result.”
“But then,” replied the major, “you will have to give the projectile enormous dimensions.”
“No. Please grant me your attention. You know that optical instruments have acquired great perfection; certain telescopes increase objects six thousand, and bring the moon to within a distance of forty miles. Now at that distance objects sixty feet square are perfectly visible. The power of penetration of the telescope has not been increased, because that power is only exercised to the detriment of their clearness, and the moon, which is only a reflecting mirror, does not send a light intense enough for the telescopes to increase objects beyond that limit.”
“Very well, then, what do you mean to do?” asked the general. “Do you intend giving a diameter of sixty feet to your projectile?”
“No.”
“You are not going to take upon yourself the task of making the moon more luminous?”
“I am, though.”
“That’s rather strong!” exclaimed Maston.
“Yes, but simple,” answered Barbicane. “If I succeed in lessening the density of the atmosphere which the moon’s light traverses, shall I not render that light more intense?”
“Evidently.”
“In order to obtain that result I shall only have to establish my telescope upon some high mountain. We can do that.”
“I give in,” answered the major; “you have such a way of simplifying things! What enlargement do you hope to obtain thus?”
“One of 48,000 times, which will bring the moon within five miles only, and objects will only need a diameter of nine feet.”
“Perfect!” exclaimed J.T. Maston; “then our projectile will have a diameter of nine feet?”
“Precisely.”
“Allow me to inform you, however,” returned Major Elphinstone, “that its weight will still be–“
“Oh, major!” answered Barbicane, “before discussing its weight allow me to tell you that our forefathers did marvels in that way. Far be it from me to pretend that ballistics have not progressed, but it is well to know that in the Middle Ages surprising results were obtained, I dare affirm, even more surprising than ours.”
“Justify your statement,” exclaimed J.T. Maston.
“Nothing is easier,” answered Barbicane; “I can give you some examples. At the siege of Constantinople by Mahomet II., in 1453, they hurled stone bullets that weighed 1,900 lbs.; at Malta, in the time of its knights, a certain cannon of Fort Saint Elme hurled projectiles weighing 2,500 lbs. According to a French historian, under Louis XI. a mortar hurled a bomb of 500 lbs. only; but that bomb, fired at the Bastille, a place where mad men imprisoned wise ones, fell at Charenton, where wise men imprison mad ones.”
“Very well,” said J.T. Maston.
“Since, what have we seen, after all? The Armstrong cannons hurl projectiles of 500 lbs., and the Rodman Columbiads projectiles of half a ton! It seems, then, that if projectiles have increased in range they have lost in weight. Now, if we turn our efforts in that direction, we must succeed with the progress of the science in doubling the weight of the projectiles of Mahomet II. and the Knights of Malta.”
“That is evident,” answered the major; “but what metal do you intend to employ for your own projectile?”
“Simply cast-iron,” said General Morgan.
“Cast-iron!” exclaimed J.T. Maston disdainfully, “that’s very common for a bullet destined to go to the moon.”
“Do not let us exaggerate, my honourable friend,” answered Morgan; “cast-iron will be sufficient.”
“Then,” replied Major Elphinstone, “as the weight of the projectile is in proportion to its volume, a cast-iron bullet, measuring nine feet in diameter, will still be frightfully heavy.”
“Yes, if it be solid, but not if it be hollow,” said Barbicane.
“Hollow!–then it will be an obus?”
“In which we can put despatches,” replied J.T. Maston, “and specimens of our terrestrial productions.”
“Yes, an obus,” answered Barbicane; “that is what it must be; a solid bullet of 108 inches would weigh more than 200,000 lbs., a weight evidently too great; however, as it is necessary to give the projectile a certain stability, I propose to give it a weight of 20,000 lbs.”
“What will be the thickness of the metal?” asked the major.
“If we follow the usual proportions,” replied Morgan, “a diameter of 800 inches demands sides two feet thick at least.”
“That would be much too thick,” answered Barbicane; “we do not want a projectile to pierce armour-plate; it only needs sides strong enough to resist the pressure of the powder-gas. This, therefore, is the problem:–What thickness ought an iron obus to have in order to weigh only 20,000 lbs.? Our clever calculator, Mr. Maston, will tell us at once.”
“Nothing is easier,” replied the honourable secretary.
So saying, he traced some algebraical signs on the paper, amongst which n^2 and x^2 frequently appeared. He even seemed to extract from them a certain cubic root, and said–
“The sides must be hardly two inches thick.”
“Will that be sufficient?” asked the major doubtfully.
“No,” answered the president, “certainly not.”
“Then what must be done?” resumed Elphinstone, looking puzzled.
“We must use another metal instead of cast-iron.”
“Brass?” suggested Morgan.
“No; that is too heavy too, and I have something better than that to propose.”
“What?” asked the major.
“Aluminium,” answered Barbicane.
“Aluminium!” cried all the three colleagues of the president.
“Certainly, my friends. You know that an illustrious French chemist, Henry St. Claire Deville, succeeded in 1854 in obtaining aluminium in a compact mass. This precious metal possesses the whiteness of silver, the indestructibility of gold, the tenacity of iron, the fusibility of copper, the lightness of glass; it is easily wrought, and is very widely distributed in nature, as aluminium forms the basis of most rocks; it is three times lighter than iron, and seems to have been created expressly to furnish us with the material for our projectile!”
“Hurrah for aluminium!” cried the secretary, always very noisy in his moments of enthusiasm.
“But, my dear president,” said the major, “is not aluminium quoted exceedingly high?”
“It was so,” answered Barbicane; “when first discovered a pound of aluminium cost 260 to 280 dollars; then it fell to twenty-seven dollars, and now it is worth nine dollars.”
“But nine dollars a pound,” replied the major, who did not easily give in; “that is still an enormous price.”
“Doubtless, my dear major; but not out of reach.”
“What will the projectile weigh, then?” asked Morgan.
“Here is the result of my calculations,” answered Barbicane. “A projectile of 108 inches in diameter and 12 inches thick would weigh, if it were made of cast-iron, 67,440 lbs.; cast in aluminium it would be reduced to 19,250 lbs.”
“Perfect!” cried Maston; “that suits our programme capitally.”
“Yes,” replied the major; “but do you not know that at nine dollars a pound the projectile would cost–“
“One hundred seventy-three thousand and fifty dollars. Yes, I know that; but fear nothing, my friends; money for our enterprise will not be wanting, I answer for that.”
“It will be showered upon us,” replied J.T. Maston.
“Well, what do you say to aluminium?” asked the president.
“Adopted,” answered the three members of the committee.
“As to the form of the projectile,” resumed Barbicane, “it is of little consequence, since, once the atmosphere cleared, it will find itself in empty space; I therefore propose a round ball, which will turn on itself, if it so pleases.”
Thus ended the first committee meeting. The question of the projectile was definitely resolved upon, and J.T. Maston was delighted with the idea of sending an aluminium bullet to the Selenites, “as it will give them no end of an idea of the inhabitants of the earth!”
CHAPTER VIII.
HISTORY OF THE CANNON.
The resolutions passed at this meeting produced a great effect outside. Some timid people grew alarmed at the idea of a projectile weighing 20,000 lbs. hurled into space. People asked what cannon could ever transmit an initial speed sufficient for such a mass. The report of the second meeting was destined to answer these questions victoriously.
The next evening the four members of the Gun Club sat down before fresh mountains of sandwiches and a veritable ocean of tea. The debate then began.
“My dear colleagues,” said Barbicane, “we are going to occupy ourselves with the construction of the engine, its length, form, composition, and weight. It is probable that we shall have to give it gigantic dimensions, but, however great our difficulties might be, our industrial genius will easily overcome them. Will you please listen to me and spare objections for the present? I do not fear them.”
An approving murmur greeted this declaration.
“We must not forget,” resumed Barbicane, “to what point our yesterday’s debate brought us; the problem is now the following: how to give an initial speed of 12,000 yards a second to a shot 108 inches in diameter weighing 20,000 lbs.
“That is the problem indeed,” answered Major Elphinstone.
“When a projectile is hurled into space,” resumed Barbicane, “what happens? It is acted upon by three independent forces, the resistance of the medium, the attraction of the earth, and the force of impulsion with which it is animated. Let us examine these three forces. The resistance of the medium–that is to say, the resistance of the air–is of little importance. In fact, the terrestrial atmosphere is only forty miles deep. With a rapidity of 12,000 yards the projectile will cross that in five seconds, and this time will be short enough to make the resistance of the medium insignificant. Let us now pass to the attraction of the earth–that is to say, to the weight of the projectile. We know that that weight diminishes in an inverse ratio to the square of distances–in fact, this is what physics teach us: when a body left to itself falls on the surface of the earth, it falls 15 feet in the first second, and if the same body had to fall 257,542 miles–that is to say, the distance between the earth and the moon–its fall would be reduced to half a line in the first second. That is almost equivalent to immobility. The question is, therefore, how progressively to overcome this law of gravitation. How shall we do it? By the force of impulsion?”
“That is the difficulty,” answered the major.
“That is it indeed,” replied the president. “But we shall triumph over it, for this force of impulsion we want depends on the length of the engine and the quantity of powder employed, the one only being limited by the resistance of the other. Let us occupy ourselves, therefore, to-day with the dimensions to be given to the cannon. It is quite understood that we can make it, as large as we like, seeing it will not have to be moved.”
“All that is evident,” replied the general.
“Until now,” said Barbicane, “the longest cannon, our enormous Columbiads, have not been more than twenty-five feet long; we shall therefore astonish many people by the dimensions we shall have to adopt.”
“Certainly,” exclaimed J.T. Maston. “For my part, I ask for a cannon half a mile long at least!”
“Half a mile!” cried the major and the general.
“Yes, half a mile, and that will be half too short.”
“Come, Maston,” answered Morgan, “you exaggerate.”
“No, I do not,” said the irate secretary; “and I really do not know why you tax me with exaggeration.”
“Because you go too far.”
“You must know, sir,” answered J.T. Maston, looking dignified, “that an artilleryman is like a cannon-ball, he can never go too far.”
The debate was getting personal, but the president interfered.
“Be calm, my friends, and let us reason it out. We evidently want a gun of great range, as the length of the engine will increase the detention of gas accumulated behind the projectile, but it is useless to overstep certain limits.”
“Perfectly,” said the major.
“What are the usual rules in such a case? Ordinarily the length of a cannon is twenty or twenty-five times the diameter of the projectile, and it weighs 235 to 240 times its weight.”
“It is not enough,” cried J.T. Maston with impetuosity.
“I agree to that, my worthy friend, and in fact by keeping that proportion for a projectile nine feet wide, weighing 30,000 lbs., the engine would only have a length of 225 feet and a weight of 7,200,000 lbs.”
“That is ridiculous,” resumed J.T. Maston. “You might as well take a pistol.”
“I think so too,” answered Barbicane; “that is why I propose to quadruple that length, and to construct a cannon 900 feet long.”
The general and the major made some objections, but, nevertheless, this proposition, strongly supported by the secretary, was definitely adopted.
“Now,” said Elphinstone, “what thickness must we give its sides?”
“A thickness of six feet,” answered Barbicane.
“You do not think of raising such a mass upon a gun-carriage?” asked the major.
“That would be superb, however! said J.T. Maston.
“But impracticable,” answered Barbicane. “No, I think of casting this engine in the ground itself, binding it up with wrought-iron hoops, and then surrounding it with a thick mass of stone and cement masonry. When it is cast it must be bored with great precision so as to prevent windage, so there will be no loss of gas, and all the expansive force of the powder will be employed in the propulsion.”
“Hurrah! hurrah!” said Maston, “we have our cannon.”
“Not yet,” answered Barbicane, calming his impatient friend with his hand.
“Why not?”
“Because we have not discussed its form. Shall it be a cannon, howitzer, or a mortar?”
“A cannon,” replied Morgan.
“A howitzer,” said the major.
“A mortar,” exclaimed J.T. Maston.
A fresh discussion was pending, each taking the part of his favourite weapon, when the president stopped it short.
“My friends,” said he, “I will soon make you agree. Our Columbiad will be a mixture of all three. It will be a cannon, because the powder-magazine will have the same diameter as the chamber. It will be a howitzer, because it will hurl an obus. Lastly, it will be a mortar, because it will be pointed at an angle of 90 deg., and that without any chance of recoil; unalterably fixed to the ground, it will communicate to the projectile all the power of impulsion accumulated in its body.”
“Adopted, adopted,” answered the members of the committee.
“One question,” said Elphinstone, “and will this _canobusomortar_ be rifled?”
“No,” answered Barbicane. “No, we must have an enormous initial speed, and you know very well that a shot leaves a rifle less rapidly than a smooth-bore.”
“True,” answered the major.
“Well, we have it this time,” repeated J.T. Maston.
“Not quite yet,” replied the president.
“Why not?”
“Because we do not yet know of what metal it will be made.”
“Let us decide that without delay.”
“I was going to propose it to you.”
The four members of the committee each swallowed a dozen sandwiches, followed by a cup of tea, and the debate recommenced.
“Our cannon,” said Barbicane, “must be possessed of great tenacity, great hardness; it must be infusible by heat, indissoluble, and inoxydable by the corrosive action of acids.”
“There is no doubt about that,” answered the major, “and as we shall have to employ a considerable quantity of metal we shall not have much choice.”
“Well, then,” said Morgan, “I propose for the fabrication of the Columbiad the best alloy hitherto known–that is to say, 100 parts of copper, 12 of tin, and 6 of brass.”
“My friends,” answered the president, “I agree that this composition has given excellent results; but in bulk it would be too dear and very hard to work. I therefore think we must adopt an excellent material, but cheap, such as cast-iron. Is not that your opinion, major?”
“Quite,” answered Elphinstone.
“In fact,” resumed Barbicane, “cast-iron costs ten times less than bronze; it is easily melted, it is readily run into sand moulds, and is rapidly manipulated; it is, therefore, an economy of money and time. Besides, that material is excellent, and I remember that during the war at the siege of Atlanta cast-iron cannon fired a thousand shots each every twenty minutes without being damaged by it.”
“Yet cast-iron is very brittle,” answered Morgan.
“Yes, but it possesses resistance too. Besides, we shall not let it explode, I can answer for that.”
“It is possible to explode and yet be honest,” replied J.T. Maston sententiously.
“Evidently,” answered Barbicane. “I am, therefore, going to beg our worthy secretary to calculate the weight of a cast-iron cannon 900 feet long, with an inner diameter of nine feet, and sides six feet thick.”
“At once,” answered J.T. Maston, and, as he had done the day before, he made his calculations with marvellous facility, and said at the end of a minute–
“This cannon will weigh 68,040 tons.”
“And how much will that cost at two cents a pound?”
“Two million five hundred and ten thousand seven hundred and one dollars.”
J.T. Maston, the major, and the general looked at Barbicane anxiously.
“Well, gentlemen,” said the president, “I can only repeat what I said to you yesterday, don’t be uneasy; we shall not want for money.”
Upon this assurance of its president the committee broke up, after having fixed a third meeting for the next evening.
CHAPTER IX.
THE QUESTION OF POWDERS.
The question of powder still remained to be settled. The public awaited this last decision with anxiety. The size of the projectile and length