This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Form:
Genre:
Published:
  • 1910
Edition:
Collection:
Tags:
Buy it on Amazon FREE Audible 30 days

would furnish a still more perfect and homogeneous material. In his study of this subject, and during the prosecution of vigorous and searching inquiries in various directions, he learned that Mr. John C. Brauner, then residing in Brooklyn, New York, had an expert knowledge of indigenous plants of the particular kind desired. During the course of a geological survey which he had made for the Brazilian Government, Mr. Brauner had examined closely the various species of palms which grow plentifully in that country, and of them there was one whose fibres he thought would be just what Edison wanted.

Accordingly, Mr. Brauner was sent for and dispatched to Brazil in December, 1880, to search for and send samples of this and such other palms, fibres, grasses, and canes as, in his judgment, would be suitable for the experiments then being carried on at Menlo Park. Landing at Para, he crossed over into the Amazonian province, and thence proceeded through the heart of the country, making his way by canoe on the rivers and their tributaries, and by foot into the forests and marshes of a vast and almost untrodden wilderness. In this manner Mr. Brauner traversed about two thousand miles of the comparatively unknown interior of Southern Brazil, and procured a large variety of fibrous specimens, which he shipped to Edison a few months later. When these fibres arrived in the United States they were carefully tested and a few of them found suitable but not superior to the Japanese bamboo, which was then being exclusively used in the manufacture of commercial Edison lamps.

Later on Edison sent out an expedition to explore the wilds of Cuba and Jamaica. A two months’ investigation of the latter island revealed a variety of bamboo growths, of which a great number of specimens were obtained and shipped to Menlo Park; but on careful test they were found inferior to the Jap- anese bamboo, and hence rejected. The exploration of the glades and swamps of Florida by three men extended over a period of five months in a minute search for fibrous woods of the palmetto species. A great variety was found, and over five hundred boxes of specimens were shipped to the laboratory from time to time, but none of them tested out with entirely satisfactory results.

The use of Japanese bamboo for carbon filaments was therefore continued in the manufacture of lamps, although an incessant search was maintained for a still more perfect material. The spirit of progress, so pervasive in Edison’s character, led him, however, to renew his investigations further afield by sending out two other men to examine the bamboo and similar growths of those parts of South America not covered by Mr. Brauner. These two men were Frank McGowan and C. F. Hanington, both of whom had been for nearly seven years in the employ of the Edison Electric Light Company in New York. The former was a stocky, rugged Irishman, possessing the native shrewdness and buoyancy of his race, coupled with undaunted courage and determination; and the latter was a veteran of the Civil War, with some knowledge of forest and field, acquired as a sportsman. They left New York in September, 1887, arriving in due time at Para, proceeding thence twenty- three hundred miles up the Amazon River to Iquitos. Nothing of an eventful nature occurred during this trip, but on arrival at Iquitos the two men separated; Mr. McGowan to explore on foot and by canoe in Peru, Ecuador, and Colombia, while Mr. Hanington returned by the Amazon River to Para. Thence Hanington went by steamer to Montevideo, and by similar conveyance up the River de la Plata and through Uruguay, Argentine, and Paraguay to the southernmost part of Brazil, collecting a large number of specimens of palms and grasses.

The adventures of Mr. McGowan, after leaving Iquitos, would fill a book if related in detail. The object of the present narrative and the space at the authors’ disposal, however, do not permit of more than a brief mention of his experiences. His first objective point was Quito, about five hundred miles away, which he proposed to reach on foot and by means of canoeing on the Napo River through a wild and comparatively unknown country teeming with tribes of hostile natives. The dangers of the expedition were pictured to him in glowing colors, but spurning prophecies of dire disaster, he engaged some native Indians and a canoe and started on his explorations, reaching Quito in eighty-seven days, after a thorough search of the country on both sides of the Napo River. From Quito he went to Guayaquil, from there by steamer to Buenaventura, and thence by rail, twelve miles, to Cordova. From this point he set out on foot to explore the Cauca Valley and the Cordilleras.

Mr. McGowan found in these regions a great variety of bamboo, small and large, some species growing seventy-five to one hundred feet in height, and from six to nine inches in diameter. He collected a large number of specimens, which were subsequently sent to Orange for Edison’s examination. After about fifteen months of exploration attended by much hardship and privation, deserted sometimes by treacherous guides, twice laid low by fevers, occasionally in peril from Indian attacks, wild animals and poisonous serpents, tormented by insect pests, endangered by floods, one hundred and nineteen days without meat, ninety-eight days without taking off his clothes, Mr. McGowan returned to America, broken in health but having faithfully fulfilled the commission intrusted to him. The Evening Sun, New York, obtained an interview with him at that time, and in its issue of May 2, 1889, gave more than a page to a brief story of his interesting adventures, and then commented editorially upon them, as follows:

“A ROMANCE OF SCIENCE”

“The narrative given elsewhere in the Evening Sun of the wanderings of Edison’s missionary of science, Mr. Frank McGowan, furnishes a new proof that the romances of real life surpass any that the imagination can frame.

“In pursuit of a substance that should meet the requirements of the Edison incandescent lamp, Mr. McGowan penetrated the wilderness of the Amazon, and for a year defied its fevers, beasts, reptiles, and deadly insects in his quest of a material so precious that jealous Nature has hidden it in her most secret fastnesses.

“No hero of mythology or fable ever dared such dragons to rescue some captive goddess as did this dauntless champion of civilization. Theseus, or Siegfried, or any knight of the fairy books might envy the victories of Edison’s irresistible lieutenant.

“As a sample story of adventure, Mr. McGowan’s narrative is a marvel fit to be classed with the historic jour- neyings of the greatest travellers. But it gains immensely in interest when we consider that it succeeded in its scientific purpose. The mysterious bamboo was discovered, and large quantities of it were procured and brought to the Wizard’s laboratory, there to suffer another wondrous change and then to light up our pleasure- haunts and our homes with a gentle radiance.”

A further, though rather sad, interest attaches to the McGowan story, for only a short time had elapsed after his return to America when he disappeared suddenly and mysteriously, and in spite of long-continued and strenuous efforts to obtain some light on the subject, no clew or trace of him was ever found. He was a favorite among the Edison “oldtimers,” and his memory is still cherished, for when some of the “boys” happen to get together, as they occasionally do, some one is almost sure to “wonder what became of poor `Mac.’ ” He was last seen at Mouquin’s famous old French restaurant on Fulton Street, New York, where he lunched with one of the authors of this book and the late Luther Stieringer. He sat with them for two or three hours discussing his wonderful trip, and telling some fascinating stories of adventure. Then the party separated at the Ann Street door of the restaurant, after making plans to secure the narrative in more detailed form for subsequent use–and McGowan has not been seen from that hour to this. The trail of the explorer was more instantly lost in New York than in the vast recesses of the Amazon swamps.

The next and last explorer whom Edison sent out in search of natural fibres was Mr. James Ricalton, of Maplewood, New Jersey, a school-principal, a well- known traveller, and an ardent student of natural science. Mr. Ricalton’s own story of his memorable expedition is so interesting as to be worthy of repetition here:

“A village schoolmaster is not unaccustomed to door-rappings; for the steps of belligerent mothers are often thitherward bent seeking redress for conjured wrongs to their darling boobies.

“It was a bewildering moment, therefore, to the Maplewood teacher when, in answering a rap at the door one afternoon, he found, instead of an irate mother, a messenger from the laboratory of the world’s greatest inventor bearing a letter requesting an audience a few hours later.

“Being the teacher to whom reference is made, I am now quite willing to confess that for the remainder of that afternoon, less than a problem in Euclid would have been sufficient to disqualify me for the remaining scholastic duties of the hour. I felt it, of course, to be no small honor for a humble teacher to be called to the sanctum of Thomas A. Edison. The letter, however, gave no intimation of the nature of the object for which I had been invited to appear before Mr. Edison….

“When I was presented to Mr. Edison his way of setting forth the mission he had designated for me was characteristic of how a great mind conceives vast undertakings and commands great things in few words. At this time Mr. Edison had discovered that the fibre of a certain bamboo afforded a very desirable carbon for the electric lamp, and the variety of bam- boo used was a product of Japan. It was his belief that in other parts of the world other and superior varieties might be found, and to that end he had dispatched explorers to bamboo regions in the valleys of the great South American rivers, where specimens were found of extraordinary quality; but the locality in which these specimens were found was lost in the limitless reaches of those great river-bottoms. The great necessity for more durable carbons became a desideratum so urgent that the tireless inventor decided to commission another explorer to search the tropical jungles of the Orient.

“This brings me then to the first meeting of Edison, when he set forth substantially as follows, as I remember it twenty years ago, the purpose for which he had called me from my scholastic duties. With a quizzical gleam in his eye, he said: `I want a man to ransack all the tropical jungles of the East to find a better fibre for my lamp; I expect it to be found in the palm or bamboo family. How would you like that job?’ Suiting my reply to his love of brevity and dispatch, I said, `That would suit me.’ `Can you go to-morrow?’ was his next question. `Well, Mr. Edison, I must first of all get a leave of absence from my Board of Education, and assist the board to secure a substitute for the time of my absence. How long will it take, Mr. Edison?’ `How can I tell? Maybe six months, and maybe five years; no matter how long, find it.’ He continued: `I sent a man to South America to find what I want; he found it; but lost the place where he found it, so he might as well never have found it at all.’ Hereat I was enjoined to proceed forthwith to court the Board of Education for a leave of absence, which I did successfully, the board considering that a call so important and honorary was entitled to their unqualified favor, which they generously granted.

“I reported to Mr. Edison on the following day, when he instructed me to come to the laboratory at once to learn all the details of drawing and carbonizing fibres, which it would be necessary to do in the Oriental jungles. This I did, and, in the mean time, a set of suitable tools for this purpose had been ordered to be made in the laboratory. As soon as I learned my new trade, which I accomplished in a few days, Mr. Edison directed me to the library of the laboratory to occupy a few days in studying the geography of the Orient and, particularly, in drawing maps of the tributaries of the Ganges, the Irrawaddy, and the Brahmaputra rivers, and other regions which I expected to explore.

“It was while thus engaged that Mr. Edison came to me one day and said: `If you will go up to the house’ (his palatial home not far away) `and look behind the sofa in the library you will find a joint of bamboo, a specimen of that found in South America; bring it down and make a study of it; if you find something equal to that I will be satisfied.’ At the home I was guided to the library by an Irish servant- woman, to whom I communicated my knowledge of the definite locality of the sample joint. She plunged her arm, bare and herculean, behind the aforementioned sofa, and holding aloft a section of wood, called out in a mood of discovery: `Is that it?’ Replying in the affirmative, she added, under an impulse of innocent divination that whatever her wizard master laid hands upon could result in nothing short of an invention, `Sure, sor, and what’s he going to invint out o’ that?’

“My kit of tools made, my maps drawn, my Oriental geography reviewed, I come to the point when matters of immediate departure are discussed; and when I took occasion to mention to my chief that, on the subject of life insurance, underwriters refuse to take any risks on an enterprise so hazardous, Mr. Edison said that, if I did not place too high a valuation on my person, he would take the risk himself. I replied that I was born and bred in New York State, but now that I had become a Jersey man I did not value myself at above fifteen hundred dollars. Edison laughed and said that he would assume the risk, and another point was settled. The next matter was the financing of the trip, about which Mr. Edison asked in a tentative way about the rates to the East. I told him the expense of such a trip could not be determined beforehand in detail, but that I had established somewhat of a reputation for economic travel, and that I did not believe any traveller could surpass me in that respect. He desired no further assurance in that direction, and thereupon ordered a letter of credit made out with authorization to order a second when the first was exhausted. Herein then are set forth in briefest space the preliminaries of a circuit of the globe in quest of fibre.

“It so happened that the day on which I set out fell on Washington’s Birthday, and I suggested to my boys and girls at school that they make a line across the station platform near the school at Maplewood, and from this line I would start eastward around the world, and if good-fortune should bring me back I would meet them from the westward at the same line. As I had often made them `toe the scratch,’ for once they were only too well pleased to have me toe the line for them.

“This was done, and I sailed via England and the Suez Canal to Ceylon, that fair isle to which Sindbad the Sailor made his sixth voyage, picturesquely referred to in history as the `brightest gem in the British Colonial Crown.’ I knew Ceylon to be eminently tropical; I knew it to be rich in many varieties of the bamboo family, which has been called the king of the grasses; and in this family had I most hope of finding the desired fibre. Weeks were spent in this paradisiacal isle. Every part was visited. Native wood craftsmen were offered a premium on every new species brought in, and in this way nearly a hundred species were tested, a greater number than was found in any other country. One of the best specimens tested during the entire trip around the world was found first in Ceylon, although later in Burmah, it being indigenous to the latter country. It is a gigantic tree-grass or reed growing in clumps of from one to two hundred, often twelve inches in diameter, and one hundred and fifty feet high, and known as the giant bamboo (Bambusa gigantia). This giant grass stood the highest test as a carbon, and on account of its extraordinary size and qualities I extend it this special mention. With others who have given much attention to this remarkable reed, I believe that in its manifold uses the bamboo is the world’s greatest dendral benefactor.

“From Ceylon I proceeded to India, touching the great peninsula first at Cape Comorin, and continuing northward by way of Pondicherry, Madura, and Madras; and thence to the tableland of Bangalore and the Western Ghauts, testing many kinds of wood at every point, but particularly the palm and bamboo families. From the range of the Western Ghauts I went to Bombay and then north by the way of Delhi to Simla, the summer capital of the Himalayas; thence again northward to the headwaters of the Sutlej River, testing everywhere on my way everything likely to afford the desired carbon.

“On returning from the mountains I followed the valleys of the Jumna and the Ganges to Calcutta, whence I again ascended the Sub-Himalayas to Darjeeling, where the numerous river-bottoms were sprinkled plentifully with many varieties of bamboo, from the larger sizes to dwarfed species covering the mountain slopes, and not longer than the grass of meadows. Again descending to the plains I passed eastward to the Brahmaputra River, which I ascended to the foot-hills in Assam; but finding nothing of superior quality in all this northern region I returned to Calcutta and sailed thence to Rangoon, in Burmah; and there, finding no samples giving more excellent tests in the lower reaches of the Irrawaddy, I ascended that river to Mandalay, where, through Burmese bamboo wiseacres, I gathered in from round about and tested all that the unusually rich Burmese flora could furnish. In Burmah the giant bamboo, as already mentioned, is found indigenous; but beside it no superior varieties were found. Samples tested at several points on the Malay Peninsula showed no new species, except at a point north of Singapore, where I found a species large and heavy which gave a test nearly equal to that of the giant bamboo in Ceylon.

“After completing the Malay Peninsula I had planned to visit Java and Borneo; but having found in the Malay Peninsula and in Ceylon a bamboo fibre which averaged a test from one to two hundred per cent. better than that in use at the lamp factory, I decided it was unnecessary to visit these countries or New Guinea, as my `Eureka’ had already been established, and that I would therefore set forth over the return hemisphere, searching China and Japan on the way. The rivers in Southern China brought down to Canton bamboos of many species, where this wondrously utilitarian reed enters very largely into the industrial life of that people, and not merely into the industrial life, but even into the culinary arts, for bamboo sprouts are a universal vegetable in China; but among all the bamboos of China I found none of superexcellence in carbonizing qualities. Japan came next in the succession of countries to be explored, but there the work was much simplified, from the fact that the Tokio Museum contains a complete classified collection of all the different species in the empire, and there samples could be obtained and tested.

“Now the last of the important bamboo-producing countries in the globe circuit had been done, and the `home-lap’ was in order; the broad Pacific was spanned in fourteen days; my natal continent in six; and on the 22d of February, on the same day, at the same hour, at the same minute, one year to a second, `little Maude,’ a sweet maid of the school, led me across the line which completed the circuit of the globe, and where I was greeted by the cheers of my boys and girls. I at once reported to Mr. Edison, whose manner of greeting my return was as characteristic of the man as his summary and matter-of- fact manner of my dispatch. His little catechism of curious inquiry was embraced in four small and intensely Anglo-Saxon words–with his usual pleasant smile he extended his hand and said: `Did you get it?’ This was surely a summing of a year’s exploration not less laconic than Caesar’s review of his Gallic campaign. When I replied that I had, but that he must be the final judge of what I had found, he said that during my absence he had succeeded in making an artificial carbon which was meeting the requirements satisfactorily; so well, indeed, that I believe no practical use was ever made of the bamboo fibres thereafter.

“I have herein given a very brief resume of my search for fibre through the Orient; and during my connection with that mission I was at all times not less astonished at Mr. Edison’s quick perception of conditions and his instant decision and his bigness of conceptions, than I had always been with his prodigious industry and his inventive genius.

“Thinking persons know that blatant men never accomplish much, and Edison’s marvellous brevity of speech along with his miraculous achievements should do much to put bores and garrulity out of fashion.”

Although Edison had instituted such a costly and exhaustive search throughout the world for the most perfect of natural fibres, he did not necessarily feel committed for all time to the exclusive use of that material for his lamp filaments. While these explorations were in progress, as indeed long before, he had given much thought to the production of some artificial compound that would embrace not only the required homogeneity, but also many other qualifications necessary for the manufacture of an improved type of lamp which had become desirable by reason of the rapid adoption of his lighting system.

At the very time Mr. McGowan was making his explorations deep in South America, and Mr. Ricalton his swift trip around the world, Edison, after much investigation and experiment, had produced a compound which promised better results than bamboo fibres. After some changes dictated by experience, this artificial filament was adopted in the manufacture of lamps. No radical change was immediately made, however, but the product of the lamp factory was gradually changed over, during the course of a few years, from the use of bamboo to the “squirted” filament, as the new material was called. An artificial compound of one kind or another has indeed been universally adopted for the purpose by all manufacturers; hence the incandescing conductors in all carbon-filament lamps of the present day are made in that way. The fact remains, however, that for nearly nine years all Edison lamps (many millions in the aggregate) were made with bamboo filaments, and many of them for several years after that, until bamboo was finally abandoned in the early nineties, except for use in a few special types which were so made until about the end of 1908. The last few years have witnessed a remarkable advance in the manufacture of incandescent lamps in the substitution of metallic filaments for those of carbon. It will be remembered that many of the earlier experiments were based on the use of strips of platinum; while other rare metals were the subject of casual trial. No real success was attained in that direction, and for many years the carbon-filament lamp reigned supreme. During the last four or five years lamps with filaments made from tantalum and tungsten have been produced and placed on the market with great success, and are now largely used. Their price is still very high, however, as compared with that of the carbon lamp, which has been vastly improved in methods of construction, and whose average price of fifteen cents is only one-tenth of what it was when Edison first brought it out.

With the close of Mr. McGowan’s and Mr. Ricalton’s expeditions, there ended the historic world-hunt for natural fibres. From start to finish the investigations and searches made by Edison himself, and carried on by others under his direction, are remarkable not only from the fact that they entailed a total expenditure of about $100,000, (disbursed under his supervision by Mr. Upton), but also because of their unique inception and thoroughness they illustrate one of the strongest traits of his character–an invincible determination to leave no stone unturned to acquire that which he believes to be in existence, and which, when found, will answer the purpose that he has in mind.

CHAPTER XIV

INVENTING A COMPLETE SYSTEM OF LIGHTING

IN Berlin, on December 11, 1908, with notable eclat, the seventieth birthday was celebrated of Emil Rathenau, the founder of the great Allgemein Elektricitaets Gesellschaft. This distinguished German, creator of a splendid industry, then received the congratulations of his fellow-countrymen, headed by Emperor William, who spoke enthusiastically of his services to electro-technics and to Germany. In his interesting acknowledgment, Mr. Rathenau told how he went to Paris in 1881, and at the electrical exhibition there saw the display of Edison’s inventions in electric lighting “which have met with as little proper appreciation as his countless innovations in connection with telegraphy, telephony, and the entire electrical industry.” He saw the Edison dynamo, and he saw the incandescent lamp, “of which millions have been manufactured since that day without the great master being paid the tribute to his invention.” But what impressed the observant, thoroughgoing German was the breadth with which the whole lighting art had been elaborated and perfected, even at that early day. “The Edison system of lighting was as beautifully conceived down to the very details, and as thoroughly worked out as if it had been tested for decades in various towns. Neither sockets, switches, fuses, lamp-holders, nor any of the other accessories necessary to complete the installation were wanting; and the generating of the current, the regulation, the wiring with distributing boxes, house connections, meters, etc., all showed signs of astonishing skill and incomparable genius.”

Such praise on such an occasion from the man who introduced incandescent electric lighting into Germany is significant as to the continued appreciation abroad of Mr. Edison’s work. If there is one thing modern Germany is proud and jealous of, it is her leadership in electrical engineering and investigation. But with characteristic insight, Mr. Rathenau here placed his finger on the great merit that has often been forgotten. Edison was not simply the inventor of a new lamp and a new dynamo. They were invaluable elements, but far from all that was necessary. His was the mighty achievement of conceiving and executing in all its details an art and an industry absolutely new to the world. Within two years this man completed and made that art available in its essential, fundamental facts, which remain unchanged after thirty years of rapid improvement and widening application.

Such a stupendous feat, whose equal is far to seek anywhere in the history of invention, is worth studying, especially as the task will take us over much new ground and over very little of the territory already covered. Notwithstanding the enormous amount of thought and labor expended on the incandescent lamp problem from the autumn of 1878 to the winter of 1879, it must not be supposed for one moment that Edison’s whole endeavor and entire inventive skill had been given to the lamp alone, or the dynamo alone. We have sat through the long watches of the night while Edison brooded on the real solution of the swarming problems. We have gazed anxiously at the steady fingers of the deft and cautious Batchelor, as one fragile filament after another refused to stay intact until it could be sealed into its crystal prison and there glow with light that never was before on land or sea. We have calculated armatures and field coils for the new dynamo with Upton, and held the stakes for Jehl and his fellows at their winding bees. We have seen the mineral and vegetable kingdoms rifled and ransacked for substances that would yield the best “filament.” We have had the vague consciousness of assisting at a great development whose evidences to-day on every hand attest its magnitude. We have felt the fierce play of volcanic effort, lifting new continents of opportunity from the infertile sea, without any devastation of pre-existing fields of human toil and harvest. But it still remains to elucidate the actual thing done; to reduce it to concrete data, and in reducing, to unfold its colossal dimensions.

The lighting system that Edison contemplated in this entirely new departure from antecedent methods included the generation of electrical energy, or current, on a very large scale; its distribution throughout extended areas, and its division and subdivision into small units converted into light at innumerable points in every direction from the source of supply, each unit to be independent of every oth- er and susceptible to immediate control by the user.

This was truly an altogether prodigious undertaking. We need not wonder that Professor Tyndall, in words implying grave doubt as to the possibility of any solution of the various problems, said publicly that he would much rather have the matter in Edison’s hands than in his own. There were no precedents, nothing upon which to build or improve. The problems could only be answered by the creation of new devices and methods expressly worked out for their solution. An electric lamp answering certain specific requirements would, indeed, be the key to the situation, but its commercial adaptation required a multifarious variety of apparatus and devices. The word “system” is much abused in invention, and during the early days of electric lighting its use applied to a mere freakish lamp or dynamo was often ludicrous. But, after all, nothing short of a complete system could give real value to the lamp as an invention; nothing short of a system could body forth the new art to the public. Let us therefore set down briefly a few of the leading items needed for perfect illumination by electricity, all of which were part of the Edison programme:

First–To conceive a broad and fundamentally correct method of distributing the current, satisfactory in a scientific sense and practical commercially in its efficiency and economy. This meant, ready made, a comprehensive plan analogous to illumination by gas, with a network of conductors all connected together, so that in any given city area the lights could be fed with electricity from several directions, thus eliminating any interruption due to the disturbance on any particular section.

Second–To devise an electric lamp that would give about the same amount of light as a gas jet, which custom had proven to be a suitable and useful unit. This lamp must possess the quality of requiring only a small investment in the copper conductors reaching it. Each lamp must be independent of every other lamp. Each and all the lights must be produced and operated with sufficient economy to compete on a commercial basis with gas. The lamp must be durable, capable of being easily and safely handled by the public, and one that would remain capable of burning at full incandescence and candle-power a great length of time.

Third–To devise means whereby the amount of electrical energy furnished to each and every customer could be determined, as in the case of gas, and so that this could be done cheaply and reliably by a meter at the customer’s premises.

Fourth–To elaborate a system or network of conductors capable of being placed underground or overhead, which would allow of being tapped at any intervals, so that service wires could be run from the main conductors in the street into each building. Where these mains went below the surface of the thoroughfare, as in large cities, there must be protective conduit or pipe for the copper conductors, and these pipes must allow of being tapped wherever necessary. With these conductors and pipes must also be furnished manholes, junction-boxes, con- nections, and a host of varied paraphernalia insuring perfect general distribution.

Fifth–To devise means for maintaining at all points in an extended area of distribution a practically even pressure of current, so that all the lamps, wherever located, near or far away from the central station, should give an equal light at all times, independent of the number that might be turned on; and safeguarding the lamps against rupture by sudden and violent fluctuations of current. There must also be means for thus regulating at the point where the current was generated the quality or pressure of the current throughout the whole lighting area, with devices for indicating what such pressure might actually be at various points in the area.

Sixth–To design efficient dynamos, such not being in existence at the time, that would convert economically the steam-power of high-speed engines into electrical energy, together with means for connecting and disconnecting them with the exterior consumption circuits; means for regulating, equalizing their loads, and adjusting the number of dynamos to be used according to the fluctuating demands on the central station. Also the arrangement of complete stations with steam and electric apparatus and auxiliary devices for insuring their efficient and continuous operation.

Seventh–To invent devices that would prevent the current from becoming excessive upon any conductors, causing fire or other injury; also switches for turning the current on and off; lamp-holders, fixtures, and the like; also means and methods for establishing the interior circuits that were to carry current to chandeliers and fixtures in buildings.

Here was the outline of the programme laid down in the autumn of 1878, and pursued through all its difficulties to definite accomplishment in about eighteen months, some of the steps being made immediately, others being taken as the art evolved. It is not to be imagined for one moment that Edison performed all the experiments with his own hands. The method of working at Menlo Park has already been described in these pages by those who participated. It would not only have been physically impossible for one man to have done all this work himself, in view of the time and labor required, and the endless detail; but most of the apparatus and devices invented or suggested by him as the art took shape required the handiwork of skilled mechanics and artisans of a high order of ability. Toward the end of 1879 the laboratory force thus numbered at least one hundred earnest men. In this respect of collaboration, Edison has always adopted a policy that must in part be taken to explain his many successes. Some inventors of the greatest ability, dealing with ideas and conceptions of importance, have found it impossible to organize or even to tolerate a staff of co-workers, preferring solitary and secret toil, incapable of team work, or jealous of any intrusion that could possibly bar them from a full and complete claim to the result when obtained. Edison always stood shoulder to shoulder with his associates, but no one ever questioned the leadership, nor was it ever in doubt where the inspiration originated. The real truth is that Edison has always been so ceaselessly fertile of ideas himself, he has had more than his whole staff could ever do to try them all out; he has sought co-operation, but no exterior suggestion. As a matter of fact a great many of the “Edison men” have made notable inventions of their own, with which their names are imperishably associated; but while they were with Edison it was with his work that they were and must be busied.

It was during this period of “inventing a system” that so much systematic and continuous work with good results was done by Edison in the design and perfection of dynamos. The value of his contributions to the art of lighting comprised in this work has never been fully understood or appreciated, having been so greatly overshadowed by his invention of the incandescent lamp, and of a complete system of distribution. It is a fact, however, that the principal improvements he made in dynamo-electric generators were of a radical nature and remain in the art. Thirty years bring about great changes, especially in a field so notably progressive as that of the generation of electricity; but different as are the dynamos of to-day from those of the earlier period, they embody essential principles and elements that Edison then marked out and elaborated as the conditions of success. There was indeed prompt appreciation in some well-informed quarters of what Edison was doing, evidenced by the sensation caused in the summer of 1881, when he designed, built, and shipped to Paris for the first Electrical Exposition ever held, the largest dynamo that had been built up to that time. It was capable of lighting twelve hundred incandescent lamps, and weighed with its engine twenty-seven tons, the armature alone weighing six tons. It was then, and for a long time after, the eighth wonder of the scientific world, and its arrival and installation in Paris were eagerly watched by the most famous physicists and electricians of Europe.

Edison’s amusing description of his experience in shipping the dynamo to Paris when built may appropriately be given here: “I built a very large dynamo with the engine directly connected, which I intended for the Paris Exposition of 1881. It was one or two sizes larger than those I had previously built. I had only a very short period in which to get it ready and put it on a steamer to reach the Exposition in time. After the machine was completed we found the voltage was too low. I had to devise a way of raising the voltage without changing the machine, which I did by adding extra magnets. After this was done, we tested the machine, and the crank-shaft of the engine broke and flew clear across the shop. By working night and day a new crank-shaft was put in, and we only had three days left from that time to get it on board the steamer; and had also to run a test. So we made arrangements with the Tammany leader, and through him with the police, to clear the street–one of the New York crosstown streets–and line it with policemen, as we proposed to make a quick passage, and didn’t know how much time it would take. About four hours before the steamer had to get it, the machine was shut down after the test, and a schedule was made out in advance of what each man had to do. Sixty men were put on top of the dynamo to get it ready, and each man had written orders as to what he was to perform. We got it all taken apart and put on trucks and started off. They drove the horses with a fire-bell in front of them to the French pier, the policemen lining the streets. Fifty men were ready to help the stevedores get it on the steamer–and we were one hour ahead of time.”

This Exposition brings us, indeed, to a dramatic and rather pathetic parting of the ways. The hour had come for the old laboratory force that had done such brilliant and memorable work to disband, never again to assemble under like conditions for like effort, although its members all remained active in the field, and many have ever since been associated prominently with some department of electrical enterprise. The fact was they had done their work so well they must now disperse to show the world what it was, and assist in its industrial exploitation. In reality, they were too few for the demands that reached Edison from all parts of the world for the introduction of his system; and in the emergency the men nearest to him and most trusted were those upon whom he could best depend for such missionary work as was now required. The disciples full of fire and enthusiasm, as well as of knowledge and experience, were soon scattered to the four winds, and the rapidity with which the Edison system was everywhere successfully introduced is testimony to the good judgment with which their leader had originally selected them as his colleagues. No one can say exactly just how this process of disintegration began, but Mr. E. H. John- son had already been sent to England in the Edison interests, and now the question arose as to what should be done with the French demands and the Paris Electrical Exposition, whose importance as a point of new departure in electrical industry was speedily recognized on both sides of the Atlantic. It is very interesting to note that as the earlier staff broke up, Edison became the centre of another large body, equally devoted, but more particularly concerned with the commercial development of his ideas. Mr. E. G. Acheson mentions in his personal notes on work at the laboratory, that in December of 1880, while on some experimental work, he was called to the new lamp factory started recently at Menlo Park, and there found Edison, Johnson, Batchelor, and Upton in conference, and “Edison informed me that Mr. Batchelor, who was in charge of the construction, development, and operation of the lamp factory, was soon to sail for Europe to prepare for the exhibit to be made at the Electrical Exposition to be held in Paris during the coming summer.” These preparations overlap the reinforcement of the staff with some notable additions, chief among them being Mr. Samuel Insull, whose interesting narrative of events fits admirably into the story at this stage, and gives a vivid idea of the intense activity and excitement with which the whole atmosphere around Edison was then surcharged: “I first met Edison on March 1, 1881. I
arrived in New York on the City of Chester about five or six in the evening, and went direct to 65 Fifth Avenue. I had come over to act as Edison’s private secretary, the position having been obtained for me through the good offices of Mr. E. H. Johnson, whom I had known in London, and who wrote to Mr. U. H. Painter, of Washington, about me in the fall of 1880. Mr. Painter sent the letter on to Mr. Batchelor, who turned it over to Edison. Johnson returned to America late in the fall of 1880, and in January, 1881, cabled to me to come to this country. At the time he cabled for me Edison was still at Menlo Park, but when I arrived in New York the famous offices of the Edison Electric Light Company had been opened at `65′ Fifth Avenue, and Edison had moved into New York with the idea of assisting in the exploitation of the Light Company’s business.

“I was taken by Johnson direct from the Inman Steamship pier to 65 Fifth Avenue, and met Edison for the first time. There were three rooms on the ground floor at that time. The front one was used as a kind of reception-room; the room immediately behind it was used as the office of the president of the Edison Electric Light Company, Major S. B. Eaton. The rear room, which was directly back of the front entrance hall, was Edison’s office, and there I first saw him. There was very little in the room except a couple of walnut roller-top desks–which were very generally used in American offices at that time. Edison received me with great cordiality. I think he was possibly disappointed at my being so young a man; I had only just turned twenty-one, and had a very boyish appearance. The picture of Edison is as vivid to me now as if the incident occurred yesterday, although it is now more than twenty-nine years since that first meeting. I had been connected with Edison’s affairs in England as private secretary to his London agent for about two years; and had been taught by Johnson to look on Edison as the greatest electrical inventor of the day–a view of him, by-the-way, which has been greatly strengthened as the years have rolled by. Owing to this, and to the fact that I felt highly flattered at the appointment as his private secretary, I was naturally prepared to accept him as a hero. With my strict English ideas as to the class of clothes to be worn by a prominent man, there was nothing in Edison’s dress to impress me. He wore a rather seedy black diagonal Prince Albert coat and waistcoat, with trousers of a dark material, and a white silk handkerchief around his neck, tied in a careless knot falling over the stiff bosom of a white shirt somewhat the worse for wear. He had a large wide-awake hat of the sombrero pattern then generally used in this country, and a rough, brown overcoat, cut somewhat similarly to his Prince Albert coat. His hair was worn quite long, and hanging carelessly over his fine forehead. His face was at that time, as it is now, clean shaven. He was full in face and figure, although by no means as stout as he has grown in recent years. What struck me above everything else was the wonderful intelligence and magnetism of his expression, and the extreme brightness of his eyes. He was far more modest than in my youthful picture of him. I had expected to find a man of distinction. His appearance, as a whole, was not what you would call `slovenly,’ it is best expressed by the word `careless.’ “

Mr. Insull supplements this pen-picture by another, bearing upon the hustle and bustle of the moment: “After a short conversation Johnson hurried me off to meet his family, and later in the evening, about eight o’clock, he and I returned to Edison’s office; and I found myself launched without further ceremony into Edison’s business affairs. Johnson had already explained to me that he was sailing the next morning, March 2d, on the S.S. Arizona, and that Mr. Edison wanted to spend the evening discussing matters in connection with his European affairs. It was assumed, inasmuch as I had just arrived from London, that I would be able to give more or less information on this subject. As Johnson was to sail the next morning at five o’clock, Edison explained that it would be necessary for him to have an understanding of European matters. Edison started out by drawing from his desk a check-book and stating how much money he had in the bank; and he wanted to know what European telephone securities were most salable, as he wished to raise the necessary funds to put on their feet the incandescent lamp factory, the Electric Tube works, and the necessary shops to build dynamos. All through the interview I was tremendously impressed with Edison’s wonderful resourcefulness and grasp, and his immediate appreciation of any suggestion of consequence bearing on the subject under discussion.

“He spoke with very great enthusiasm of the work before him–namely, the development of his electric- lighting system; and his one idea seemed to be to raise all the money he could with the object of pouring it into the manufacturing side of the lighting business. I remember how extraordinarily I was impressed with him on this account, as I had just come from a circle of people in London who not only questioned the possibility of the success of Edison’s invention, but often expressed doubt as to whether the work he had done could be called an invention at all. After discussing affairs with Johnson–who was receiving his final instructions from Edison–far into the night, and going down to the steamer to see Johnson aboard, I finished my first night’s business with Edison somewhere between four and five in the morning, feeling thoroughly imbued with the idea that I had met one of the great master minds of the world. You must allow for my youthful enthusiasm, but you must also bear in mind Edison’s peculiar gift of magnetism, which has enabled him during his career to attach so many men to him. I fell a victim to the spell at the first interview.”

Events moved rapidly in those days. The next morning, Tuesday, Edison took his new fidus Achates with him to a conference with John Roach, the famous old ship-builder, and at it agreed to take the AEtna Iron works, where Roach had laid the foundations of his fame and fortune. These works were not in use at the time. They were situated on Goerck Street, New York, north of Grand Street, on the east side of the city, and there, very soon after, was established the first Edison dynamo-manufacturing establishment, known for many years as the Edison Machine Works. The same night Insull made his first visit to Menlo Park. Up to that time he had seen very little incandescent lighting, for the simple reason that there was very little to see. Johnson had had a few Edison lamps in London, lit up from primary batteries, as a demonstration; and in the summer of 1880 Swan had had a few series lamps burning in London. In New York a small gas-engine plant was being started at the Edison offices on Fifth Avenue. But out at Menlo Park there was the first actual electric-lighting central station, supplying distributed incandescent lamps and some electric motors by means of underground conductors imbedded in asphaltum and surrounded by a wooden box. Mr. Insull says: “The system employed was naturally the two-wire, as at that time the three-wire had not been thought of. The lamps were partly of the horseshoe filament paper-carbon type, and partly bamboo-filament lamps, and were of an efficiency of 95 to 100 watts per 16 c.p. I can never forget the impression that this first view of the electric-lighting industry produced on me. Menlo Park must always be looked upon as the birthplace of the electric light and power industry. At that time it was the only place where could be seen an electric light and power multiple arc distribution system, the operation of which seemed as successful to my youthful mind as the operation of one of the large metropolitan systems to-day. I well remember about ten o’clock that night going down to the Menlo Park depot and getting the station agent, who was also the telegraph operator, to send some cable messages for me to my London friends, announcing that I had seen Edison’s incandescent lighting system in actual operation, and that so far as I could tell it was an accomplished fact. A few weeks afterward I received a letter from one of my London friends, who was a doubting Thomas, upbraiding me for coming so soon under the spell of the `Yankee inventor.’ “

It was to confront and deal with just this element of doubt in London and in Europe generally, that the dispatch of Johnson to England and of Batchelor to France was intended. Throughout the Edison staff there was a mingled feeling of pride in the work, resentment at the doubts expressed about it, and keen desire to show how excellent it was. Batchelor left for Paris in July, 1881–on his second trip to Europe that year–and the exhibit was made which brought such an instantaneous recognition of the incalculable value of Edison’s lighting inventions, as evidenced by the awards and rewards immediately bestowed upon him. He was made an officer of the Legion of Honor, and Prof. George F. Barker cabled as follows from Paris, announcing the decision of the expert jury which passed upon the exhibits: “Accept my congratulations. You have distanced all competitors and obtained a diploma of honor, the highest award given in the Exposition. No person in any class in which you were an exhibitor received a like reward.”

Nor was this all. Eminent men in science who had previously expressed their disbelief in the statements made as to the Edison system were now foremost in generous praise of his notable achievements, and accorded him full credit for its completion. A typical instance was M. Du Moncel, a distinguished electrician, who had written cynically about Edison’s work and denied its practicability. He now recanted publicly in this language, which in itself shows the state of the art when Edison came to the front: “All these experiments achieved but moderate success, and when, in 1879, the new Edison incandescent carbon lamp was announced, many of the scientists, and I, particularly, doubted the accuracy of the reports which came from America. This horseshoe of carbonized paper seemed incapable to resist mechanical shocks and to maintain incandescence for any considerable length of time. Nevertheless, Mr. Edison was not discouraged, and despite the active opposition made to his lamp, despite the polemic acerbity of which he was the object, he did not cease to perfect it; and he succeeded in producing the lamps which we now behold exhibited at the Exposition, and are admired by all for their perfect steadiness.”

The competitive lamps exhibited and tested at this time comprised those of Edison, Maxim, Swan, and Lane-Fox. The demonstration of Edison’s success stimulated the faith of his French supporters, and rendered easier the completion of plans for the Societe Edison Continental, of Paris, formed to operate the Edison patents on the Continent of Europe. Mr. Batchelor, with Messrs. Acheson and Hipple, and one or two other assistants, at the close of the Exposition transferred their energies to the construction and equipment of machine-shops and lamp factories at Ivry-sur-Seine for the company, and in a very short time the installation of plants began in various countries–France, Italy, Holland, Belgium, etc.

All through 1881 Johnson was very busy, for his part, in England. The first “Jumbo” Edison dynamo had gone to Paris; the second and third went to London, where they were installed in 1881 by Mr. Johnson and his assistant, Mr. W. J. Hammer, in the three-thousand-light central station on Holborn Viaduct, the plant going into operation on January 12, 1882. Outside of Menlo Park this was the first regular station for incandescent lighting in the world, as the Pearl Street station in New York did not go into operation until September of the same year. This historic plant was hurriedly thrown together on Crown land, and would doubtless have been the nucleus of a great system but for the passage of the English electric lighting act of 1882, which at once throttled the industry by its absurd restrictive provisions, and which, though greatly modified, has left England ever since in a condition of serious inferiority as to development in electric light and power. The streets and bridges of Holborn Viaduct were lighted by lamps turned on and off from the station, as well as the famous City Temple of Dr. Joseph Parker, the first church in the world to be lighted by incandescent lamps–indeed, so far as can be ascertained, the first church to be illuminated by electricity in any form. Mr. W. J. Hammer, who supplies some very interesting notes on the installation, says: “I well remember the astonishment of Doctor Parker and his associates when they noted the difference of temperature as compared with gas. I was informed that the people would not go in the gallery in warm weather, owing to the great heat caused by the many gas jets, whereas on the introduction of the incandescent lamp there was no complaint.” The telegraph operating-room of the General Post-Office, at St. Martin’s-Le Grand and Newgate Street nearby, was supplied with four hundred lamps through the instrumentality of Mr. (Sir) W. H. Preece, who, having been seriously sceptical as to Mr. Edison’s results, became one of his most ardent advocates, and did much to facilitate the introduction of the light. This station supplied its customers by a network of feeders and mains of the standard underground two-wire Edison tubing-conductors in sections of iron pipe–such as was
used subsequently in New York, Milan, and other cities. It also had a measuring system for the current, employing the Edison electrolytic meter. Arc lamps were operated from its circuits, and one of the first sets of practicable storage batteries was used experimentally at the station. In connection with these batteries Mr. Hammer tells a characteristic anecdote of Edison: “A careless boy passing through the station whistling a tune and swinging carelessly a hammer in his hand, rapped a carboy of sulphuric acid which happened to be on the floor above a `Jumbo’ dynamo. The blow broke the glass carboy, and the acid ran down upon the field magnets of the dynamo, destroying the windings of one of the twelve magnets. This accident happened while I was taking a vacation in Germany, and a prominent scientific man connected with the company cabled Mr. Edison to know whether the machine would work if the coil was cut out. Mr. Edison sent the laconic reply: `Why doesn’t he try it and see?’ Mr. E. H. Johnson was kept busy not only with the cares and responsibilities of this pioneer English plant, but by negotiations as to company formations, hearings before Parliamentary committees, and particularly by distinguished visitors, including all the foremost scientific men in England, and a great many well- known members of the peerage. Edison was fortunate in being represented by a man with so much address, intimate knowledge of the subject, and powers of explanation. As one of the leading English papers said at the time, with equal humor and truth: `There is but one Edison, and Johnson is his prophet.’ “

As the plant continued in operation, various details and ideas of improvement emerged, and Mr. Hammer says: “Up to the time of the construction of this plant it had been customary to place a single-pole switch on one wire and a safety fuse on the other; and the practice of putting fuses on both sides of a lighting circuit was first used here. Some of the first, if not the very first, of the insulated fixtures were used in this plant, and many of the fixtures were equipped with ball insulating joints, enabling the chandeliers–or `electroliers’–to be turned around, as was common with the gas chandeliers. This particular device was invented by Mr. John B. Verity, whose firm built many of the fixtures for the Edison Company, and constructed the notable electroliers shown at the Crystal Palace Exposition of 1882.”

We have made a swift survey of developments from the time when the system of lighting was ready for use, and when the staff scattered to introduce it. It will be readily understood that Edison did not sit with folded hands or drop into complacent satisfac- tion the moment he had reached the practical stage of commercial exploitation. He was not willing to say “Let us rest and be thankful,” as was one of England’s great Liberal leaders after a long period of reform. On the contrary, he was never more active than immediately after the work we have summed up at the beginning of this chapter. While he had been pursuing his investigations of the generator in conjunction with the experiments on the incandescent lamp, he gave much thought to the question of distribution of the current over large areas, revolving in his mind various plans for the accomplishment of this purpose, and keeping his mathematicians very busy working on the various schemes that suggested themselves from time to time. The idea of a complete system had been in his mind in broad outline for a long time, but did not crystallize into commercial form until the incandescent lamp was an accomplished fact. Thus in January, 1880, his first patent application for a “System of Electrical Distribution” was signed. It was filed in the Patent Office a few days later, but was not issued as a patent until August 30, 1887. It covered, fundamentally, multiple arc distribution, how broadly will be understood from the following extracts from the New York Electrical Review of September 10, 1887: “It would appear as if the entire field of multiple distribution were now in the hands of the owners of this patent…. The patent is about as broad as a patent can be, being regardless of specific devices, and laying a powerful grasp on the fundamental idea of multiple distribution from a number of generators throughout a metallic circuit.”

Mr. Edison made a number of other applications for patents on electrical distribution during the year 1880. Among these was the one covering the celebrated “Feeder” invention, which has been of very great commercial importance in the art, its object being to obviate the “drop” in pressure, rendering lights dim in those portions of an electric-light system that were remote from the central station.[10]

[10] For further explanation of “Feeder” patent, see Appendix.

From these two patents alone, which were absolutely basic and fundamental in effect, and both of which were, and still are, put into actual use wherever central-station lighting is practiced, the reader will see that Mr. Edison’s patient and thorough study, aided by his keen foresight and unerring judgment, had enabled him to grasp in advance with a master hand the chief and underlying principles of a true system– that system which has since been put into practical use all over the world, and whose elements do not need the touch or change of more modern scientific knowledge.

These patents were not by any means all that he applied for in the year 1880, which it will be remembered was the year in which he was perfecting the incandescent electric lamp and methods, to put into the market for competition with gas. It was an extraordinarily busy year for Mr. Edison and his whole force, which from time to time was increased in number. Improvement upon improvement was the order of the day. That which was considered good to-day was superseded by something better and more serviceable to-morrow. Device after device, relating to some part of the entire system, was designed, built, and tried, only to be rejected ruthlessly as being unsuitable; but the pursuit was not abandoned. It was renewed over and over again in innumerable ways until success had been attained.

During the year 1880 Edison had made application for sixty patents, of which thirty-two were in relation to incandescent lamps; seven covered inventions relating to distributing systems (including the two above particularized); five had reference to inventions of parts, such as motors, sockets, etc.; six covered inventions relating to dynamo-electric machines; three related to electric railways, and seven to miscellaneous apparatus, such as telegraph relays, magnetic ore separators, magneto signalling apparatus, etc.

The list of Mr. Edison’s patents (see Appendices) is not only a monument to his life’s work, but serves to show what subjects he has worked on from year to year since 1868. The reader will see from an examination of this list that the years 1880, 1881, 1882, and 1883 were the most prolific periods of invention. It is worth while to scrutinize this list closely to appreciate the wide range of his activities. Not that his patents cover his entire range of work by any means, for his note-books reveal a great number of major and minor inventions for which he has not seen fit to take out patents. Moreover, at the period now described Edison was the victim of a dishonest patent solicitor, who deprived him of a number of patents in the following manner:

“Around 1881-82 I had several solicitors attending to different classes of work. One of these did me a most serious injury. It was during the time that I was developing my electric-lighting system, and I was working and thinking very hard in order to cover all the numerous parts, in order that it would be complete in every detail. I filed a great many applications for patents at that time, but there were seventy-eight of the inventions I made in that period that were entirely lost to me and my company by reason of the dishonesty of this patent solicitor. Specifications had been drawn, and I had signed and sworn to the application for patents for these seventy-eight inventions, and naturally I supposed they had been filed in the regular way.

“As time passed I was looking for some action of the Patent Office, as usual, but none came. I thought it very strange, but had no suspicions until I began to see my inventions recorded in the Patent Office Gazette as being patented by others. Of course I ordered an investigation, and found that the patent solicitor had drawn from the company the fees for filing all these applications, but had never filed them. All the papers had disappeared, however, and what he had evidently done was to sell them to others, who had signed new applications and proceeded to take out patents themselves on my inventions. I afterward found that he had been previously mixed up with a somewhat similar crooked job in connection with telephone patents.

“I am free to confess that the loss of these seventy- eight inventions has left a sore spot in me that has never healed. They were important, useful, and valuable, and represented a whole lot of tremendous work and mental effort, and I had had a feeling of pride in having overcome through them a great many serious obstacles, One of these inventions covered the multipolar dynamo. It was an elaborated form of the type covered by my patent No. 219,393 which had a ring armature. I modified and improved on this form and had a number of pole pieces placed all around the ring, with a modified form of armature winding. I built one of these machines and ran it successfully in our early days at the Goerck Street shop.

“It is of no practical use to mention the man’s name. I believe he is dead, but he may have left a family. The occurrence is a matter of the old Edison Company’s records.”

It will be seen from an examination of the list of patents in the Appendix that Mr. Edison has continued year after year adding to his contributions to the art of electric lighting, and in the last twenty- eight years–1880-1908–has taken out no fewer than three hundred and seventy-five patents in this branch of industry alone. These patents may be roughly tabulated as follows:

Incandescent lamps and their manufacture………………..149 Distributing systems and their control and regulation……. 77 Dynamo-electric machines and accessories………………..106 Minor parts, such as sockets, switches, safety catches, meters, underground conductors and parts, etc…………… 43

Quite naturally most of these patents cover inventions that are in the nature of improvements or based upon devices which he had already created; but there are a number that relate to inventions absolutely fundamental and original in their nature. Some of these have already been alluded to; but among the others there is one which is worthy of special mention in connection with the present consideration of a complete system. This is patent No. 274,290, applied for November 27, 1882, and is known as the “Three-wire” patent. It is described more fully in the Appendix.

The great importance of the “Feeder” and “Three- wire” inventions will be apparent when it is realized that without them it is a question whether electric light could be sold to compete with low-priced gas, on account of the large investment in conductors that would be necessary. If a large city area were to be lighted from a central station by means of copper conductors running directly therefrom to all parts of the district, it would be necessary to install large conductors, or suffer such a drop of pressure at the ends most remote from the station as to cause the lights there to burn with a noticeable diminution of candle-power. The Feeder invention overcame this trouble, and made it possible to use conductors ONLY ONE-EIGHTH THE SIZE that would otherwise have been necessary to produce the same results.

A still further economy in cost of conductors was effected by the “Three-wire” invention, by the use of which the already diminished conductors could be still further reduced TO ONE-THIRD of this smaller size, and at the same time allow of the successful operation of the station with far better results than if it were operated exactly as at first conceived. The Feeder and Three-wire systems are at this day used in all parts of the world, not only in central-station work, but in the installation and operation of isolated electric-light plants in large buildings. No sensible or efficient station manager or electric contractor would ever think of an installation made upon any other plan. Thus Mr. Edison’s early conceptions of the necessities of a complete system, one of them made even in advance of practice, have stood firm, unimproved, and unchanged during the past twenty- eight years, a period of time which has witnessed more wonderful and rapid progress in electrical science and art than has been known during any similar art or period of time since the world began.

It must be remembered that the complete system in all its parts is not comprised in the few of Mr. Edison’s patents, of which specific mention is here made. In order to comprehend the magnitude and extent of his work and the quality of his genius, it is necessary to examine minutely the list of patents issued for the various elements which go to make up such a system. To attempt any relation in detail of the conception and working-out of each part or element; to enter into any description of the almost innumerable experiments and investigations that were made would entail the writing of several volumes, for Mr. Edison’s close-written note-books covering these subjects number nearly two hundred.

It is believed that enough evidence has been given in this chapter to lead to an appreciation of the assiduous work and practical skill involved in “inventing a system” of lighting that would surpass, and to a great extent, in one single quarter of a century, supersede all the other methods of illumination developed during long centuries. But it will be ap- propriate before passing on to note that on January 17, 1908, while this biography was being written, Mr. Edison became the fourth recipient of the John Fritz gold medal for achievement in industrial progress. This medal was founded in 1902 by the professional friends and associates of the veteran American ironmaster and metallurgical inventor, in honor of his eightieth birthday. Awards are made by a board of sixteen engineers appointed in equal numbers from the four great national engineering societies –the American Society of Civil Engineers, the American Institute of Mining Engineers, the American Society of Mechanical Engineers, and the American Institute of Electrical Engineers, whose membership embraces the very pick and flower of professional engineering talent in America. Up to the time of the Edison award, three others had been made. The first was to Lord Kelvin, the Nestor of physics in Europe, for his work in submarine-cable telegraphy and other scientific achievement. The second was to George Westinghouse for the air-brake. The third was to Alexander Graham Bell for the invention and introduction of the telephone. The award to Edison was not only for his inventions in duplex and quadruplex telegraphy, and for the phonograph, but for the development of a commercially practical incandescent lamp, and the development of a complete system of electric lighting, including dynamos, regulating devices, underground system, protective devices, and meters. Great as has been the genius brought to bear on electrical development, there is no other man to whom such a comprehensive tribute could be paid.

CHAPTER XV

INTRODUCTION OF THE EDISON ELECTRIC LIGHT

IN the previous chapter on the invention of a system, the narrative has been carried along for several years of activity up to the verge of the successful and commercial application of Edison’s ideas and devices for incandescent electric lighting. The story of any one year in this period, if treated chronologically, would branch off in a great many different directions, some going back to earlier work, others forward to arts not yet within the general survey; and the effect of such treatment would be confusing. In like manner the development of the Edison lighting system followed several concurrent, simultaneous lines of advance; and an effort was therefore made in the last chapter to give a rapid glance over the whole movement, embracing a term of nearly five years, and including in its scope both the Old World and the New. What is necessary to the completeness of the story at this stage is not to recapitulate, but to take up some of the loose ends of threads woven in and follow them through until the clear and comprehensive picture of events can be seen.

Some things it would be difficult to reproduce in any picture of the art and the times. One of the greatest delusions of the public in regard to any notable invention is the belief that the world is waiting for it with open arms and an eager welcome. The exact contrary is the truth. There is not a single new art or device the world has ever enjoyed of which it can be said that it was given an immediate and enthusiastic reception. The way of the inventor is hard. He can sometimes raise capital to help him in working out his crude conceptions, but even then it is frequently done at a distressful cost of personal surrender. When the result is achieved the invention makes its appeal on the score of economy of material or of effort; and then “labor” often awaits with crushing and tyrannical spirit to smash the apparatus or forbid its very use. Where both capital and labor are agreed that the object is worthy of encouragement, there is the supreme indifference of the public to overcome, and the stubborn resistance of pre-existing devices to combat. The years of hardship and struggle are thus prolonged, the chagrin of poverty and neglect too frequently embitters the inventor’s scanty bread; and one great spirit after another has succumbed to the defeat beyond which lay the procrastinated triumph so dearly earned. Even in America, where the adoption of improvements and innovations is regarded as so prompt and sure, and where the huge tolls of the Patent Office and the courts bear witness to the ceaseless efforts of the inventor, it is impossible to deny the sad truth that unconsciously society discourages invention rather than invites it. Possibly our national optimism as revealed in invention–the seeking a higher good–needs some check. Possibly the leaders would travel too fast and too far on the road to perfection if conservatism did not also play its salutary part in insisting that the procession move forward as a whole.

Edison and his electric light were happily more fortunate than other men and inventions, in the relative cordiality of the reception given them. The merit was too obvious to remain unrecognized. Nevertheless, it was through intense hostility and opposition that the young art made its way, pushed forward by Edison’s own strong personality and by his unbounded, unwavering faith in the ultimate success of his system. It may seem strange that great effort was required to introduce a light so manifestly convenient, safe, agreeable, and advantageous, but the facts are matter of record; and to-day the recollection of some of the episodes brings a fierce glitter into the eye and keen indignation into the voice of the man who has come so victoriously through it all.

It was not a fact at any time that the public was opposed to the idea of the electric light. On the contrary, the conditions for its acceptance had been ripening fast. Yet the very vogue of the electric arc light made harder the arrival of the incandescent. As a new illuminant for the streets, the arc had become familiar, either as a direct substitute for the low gas lamp along the sidewalk curb, or as a novel form of moonlight, raised in groups at the top of lofty towers often a hundred and fifty feet high. Some of these lights were already in use for large indoor spaces, although the size of the unit, the deadly pressure of the current, and the sputtering sparks from the carbons made them highly objectionable for such purposes. A number of parent arc-lighting companies were in existence, and a great many local companies had been called into being under franchises for commercial business and to execute regular city contracts for street lighting. In this manner a good deal of capital and the energies of many prominent men in politics and business had been rallied distinctively to the support of arc lighting. Under the inventive leadership of such brilliant men as Brush, Thomson, Weston, and Van Depoele–there were scores of others–the industry had made considerable progress and the art had been firmly established. Here lurked, however, very vigorous elements of opposition, for Edison predicted from the start the superiority of the small electric unit of light, and devoted himself exclusively to its perfection and introduction. It can be readily seen that this situation made it all the more difficult for the Edison system to secure the large sums of money needed for its exploitation, and to obtain new franchises or city ordinances as a public utility. Thus in a curious manner the modern art of electric lighting was in a very true sense divided against itself, with intense rivalries and jealousies which were none the less real because they were but temporary and occurred in a field where ultimate union of forces was inevitable. For a long period the arc was dominant and supreme in the lighting branch of the electrical industries, in all respects, whether as to investment, employees, income, and profits, or in respect to the manufacturing side. When the great National Electric Light Association was formed in 1885, its organizers were the captains of arc lighting, and not a single Edison company or licensee could be found in its ranks, or dared to solicit membership. The Edison companies, soon numbering about three hundred, formed their own association–still maintained as a separate and useful body–and the lines were tensely drawn in a way that made it none too easy for the Edison service to advance, or for an impartial man to remain friendly with both sides. But the growing popularity of incandescent lighting, the flexibility and safety of the system, the ease with which other electric devices for heat, power, etc., could be put indiscriminately on the same circuits with the lamps, in due course rendered the old attitude of opposition obviously foolish and untenable. The United States Census Office statistics of 1902 show that the income from incandescent lighting by central stations had by that time become over 52 per cent. of the total, while that from arc lighting was less than 29; and electric-power service due to the ease with which motors could be introduced on incandescent circuits brought in 15 per cent. more. Hence twenty years after the first Edison stations were established the methods they involved could be fairly credited with no less than 67 per cent. of all central-station income in the country, and the proportion has grown since then. It will be readily understood that under these conditions the modern lighting company supplies to its customers both incandescent and arc lighting, frequently from the same dynamo-electric machinery as a source of current; and that the old feud as between the rival systems has died out. In fact, for some years past the presidents of the National Electric Light Association have been chosen almost exclusively from among the managers of the great Edison lighting companies in the leading cities.

The other strong opposition to the incandescent light came from the gas industry. There also the most bitter feeling was shown. The gas manager did not like the arc light, but it interfered only with his street service, which was not his largest source of income by any means. What did arouse his ire and indignation was to find this new opponent, the little incandescent lamp, pushing boldly into the field of interior lighting, claiming it on a great variety of grounds of superiority, and calmly ignoring the question of price, because it was so much better. Newspaper records and the pages of the technical papers of the day show to what an extent prejudice and passion were stirred up and the astounding degree to which the opposition to the new light was carried.

Here again was given a most convincing demonstration of the truth that such an addition to the resources of mankind always carries with it unsuspected benefits even for its enemies. In two distinct directions the gas art was immediately helped by Edison’s work. The competition was most salutary in the stimulus it gave to improvements in processes for making, distributing, and using gas, so that while vast economies have been effected at the gas works, the customer has had an infinitely better light for less money. In the second place, the coming of the incandescent light raised the standard of illumination in such a manner that more gas than ever was wanted in order to satisfy the popular demand for brightness and brilliancy both indoors and on the street. The result of the operation of these two forces acting upon it wholly from without, and from a rival it was desired to crush, has been to increase enormously the production and use of gas in the last twenty-five years. It is true that the income of the central stations is now over $300,000,000 a year, and that isolated-plant lighting represents also a large amount of diverted business; but as just shown, it would obviously be unfair to regard all this as a loss from the standpoint of gas. It is in great measure due to new sources of income developed by electricity for itself.

A retrospective survey shows that had the men in control of the American gas-lighting art, in 1880, been sufficiently far-sighted, and had they taken a broader view of the situation, they might easily have remained dominant in the whole field of artificial lighting by securing the ownership of the patents and devices of the new industry. Apparently not a single step of that kind was undertaken, nor probably was there a gas manager who would have agreed with Edison in the opinion written down by him at the time in little note-book No. 184, that gas properties were having conferred on them an enhanced earning capacity. It was doubtless fortunate and providential for the electric-lighting art that in its state of immature development it did not fall into the hands of men who were opposed to its growth, and would not have sought its technical perfection. It was allowed to carve out its own career, and thus escaped the fate that is supposed to have attended other great inventions–of being bought up merely for purposes of suppression. There is a vague popular notion that this happens to the public loss; but the truth is that no discovery of any real value is ever entirely lost. It may be retarded; but that is all. In the case of the gas companies and the incandescent light, many of them to whom it was in the early days as great an irritant as a red flag to a bull, emulated the performance of that animal and spent a great deal of money and energy in bellowing and throwing up dirt in the effort to destroy the hated enemy. This was not long nor universally the spirit shown; and to-day in hundreds of cities the electric and gas properties are united under the one management, which does not find it impossible to push in a friendly and progressive way the use of both illuminants. The most conspicuous example of this identity of interest is given in New York itself.

So much for the early opposition, of which there was plenty. But it may be questioned whether inertia is not equally to be dreaded with active ill-will. Nothing is more difficult in the world than to get a good many hundreds of thousands or millions of people to do something they have never done before. A very real difficulty in the introduction of his lamp and lighting system by Edison lay in the absolute ignorance of the public at large, not only as to its merits, but as to the very appearance of the light, Some few thousand people had gone out to Menlo Park, and had there seen the lamps in operation at the laboratory or on the hillsides, but they were an insignificant proportion of the inhabitants of the United States. Of course, a great many accounts were written and read, but while genuine interest was aroused it was necessarily apathetic. A newspaper description or a magazine article may be admirably complete in itself, with illustrations, but until some personal experience is had of the thing described it does not convey a perfect mental picture, nor can it always make the desire active and insistent. Generally, people wait to have the new thing brought to them; and hence, as in the case of the Edison light, an educational campaign of a practical nature is a fundamental condition of success.

Another serious difficulty confronting Edison and his associates was that nowhere in the world were there to be purchased any of the appliances necessary for the use of the lighting system. Edison had resolved from the very first that the initial central station embodying his various ideas should be installed in New York City, where he could superintend the installation personally, and then watch the operation. Plans to that end were now rapidly maturing; but there would be needed among many other things –every one of them new and novel–dynamos, switchboards, regulators, pressure and current indicators, fixtures in great variety, incandescent lamps, meters, sockets, small switches, underground conductors, junction-boxes, service-boxes, manhole- boxes, connectors, and even specially made wire. Now, not one of these miscellaneous things was in existence; not an outsider was sufficiently informed about such devices to make them on order, except perhaps the special wire. Edison therefore started first of all a lamp factory in one of the buildings at Menlo Park, equipped it with novel machinery and apparatus, and began to instruct men, boys, and girls, as they could be enlisted, in the absolutely new art, putting Mr. Upton in charge.

With regard to the conditions attendant upon the manufacture of the lamps, Edison says: “When we first started the electric light we had to have a factory for manufacturing lamps. As the Edison Light Company did not seem disposed to go into manufacturing, we started a small lamp factory at Menlo Park with what money I could raise from my other inventions and royalties, and some assistance. The lamps at that time were costing about $1.25 each to make, so I said to the company: `If you will give me a contract during the life of the patents, I will make all the lamps required by the company and deliver them for forty cents.’ The company jumped at the chance of this offer, and a contract was drawn up. We then bought at a receiver’s sale at Harrison, New Jersey, a very large brick factory building which had been used as an oil-cloth works. We got it at a great bargain, and only paid a small sum down, and the balance on mortgage. We moved the lamp works from Menlo Park to Harrison. The first year the lamps cost us about $1.10 each. We sold them for forty cents; but there were only about twenty or thirty thousand of them. The next year they cost us about seventy cents, and we sold them for forty. There were a good many, and we lost more money the second year than the first. The third year I succeeded in getting up machinery and in changing the processes, until it got down so that they cost somewhere around fifty cents. I still sold them for forty cents, and lost more money that year than any other, because the sales were increasing rapidly. The fourth year I got it down to thirty-seven cents, and I made all the money up in one year that I had lost previously. I finally got it down to twenty-two cents, and sold them for forty cents; and they were made by the million. Whereupon the Wall Street people thought it was a very lucrative business, so they concluded they would like to have it, and bought us out.

“One of the incidents which caused a very great cheapening was that, when we started, one of the important processes had to be done by experts. This was the sealing on of the part carrying the filament into the globe, which was rather a delicate operation in those days, and required several months of training before any one could seal in a fair number of parts in a day. When we got to the point where we employed eighty of these experts they formed a union; and knowing it was impossible to manufacture lamps without them, they became very insolent. One instance was that the son of one of these experts was employed in the office, and when he was told to do anything would not do it, or would give an insolent reply. He was discharged, whereupon the union notified us that unless the boy was taken back the whole body would go out. It got so bad that the manager came to me and said he could not stand it any longer; something had got to be done. They were not only more surly; they were diminishing the output, and it became impossible to manage the works. He got me enthused on the subject, so I started in to see if it were not possible to do that operation by machinery. After feeling around for some days I got a clew how to do it. I then put men on it I could trust, and made the preliminary machinery. That seemed to work pretty well. I then
made another machine which did the work nicely. I then made a third machine, and would bring in yard men, ordinary laborers, etc., and when I could get these men to put the parts together as well as the trained experts, in an hour, I considered the machine complete. I then went secretly to work and made thirty of the machines. Up in the top loft of the factory we stored those machines, and at night we put up the benches and got everything all ready. Then we discharged the office-boy. Then the union went out. It has been out ever since.

“When we formed the works at Harrison we divided the interests into one hundred shares or parts at $100 par. One of the boys was hard up after a time, and sold two shares to Bob Cutting. Up to that time we had never paid anything; but we got around to the point where the board declared a dividend every Saturday night. We had never declared a dividend when Cutting bought his shares, and after getting his dividends for three weeks in succession, he called up on the telephone and wanted to know what kind of a concern this was that paid a weekly dividend. The works sold for $1,085,000.”

Incidentally it may be noted, as illustrative of the problems brought to Edison, that while he had the factory at Harrison an importer in the Chinese trade went to him and wanted a dynamo to be run by hand power. The importer explained that in China human labor was cheaper than steam power. Edison devised a machine to answer the purpose, and put long spokes on it, fitted it up, and shipped it to China. He has not, however, heard of it since.

For making the dynamos Edison secured, as noted in the preceding chapter, the Roach Iron Works on Goerck Street, New York, and this was also equipped. A building was rented on Washington Street, where machinery and tools were put in specially designed for making the underground tube conductors and their various paraphernalia; and the faithful John Kruesi was given charge of that branch of production. To Sigmund Bergmann, who had worked previously with Edison on telephone apparatus and phonographs, and was already making Edison specialties in a small way in a loft on Wooster Street, New York, was assigned the task of constructing sockets, fixtures, meters, safety fuses, and numerous other details.

Thus, broadly, the manufacturing end of the problem of introduction was cared for. In the early part of 1881 the Edison Electric Light Company leased the old Bishop mansion at 65 Fifth Avenue, close to Fourteenth Street, for its headquarters and show- rooms. This was one of the finest homes in the city of that period, and its acquisition was a premonitory sign of the surrender of the famous residential avenue to commerce. The company needed
not only offices, but, even more, such an interior as would display to advantage the new light in everyday use; and this house with its liberal lines, spacious halls, lofty ceilings, wide parlors, and graceful, winding stairway was ideal for the purpose. In fact, in undergoing this violent change, it did not cease to be a home in the real sense, for to this day many an Edison veteran’s pulse is quickened by some chance reference to “65,” where through many years the work of development by a loyal and devoted band of workers was centred. Here Edison and a few of his assistants from Menlo Park installed immediately in the basement a small generating plant, at first with a gas-engine which was not successful, and then with a Hampson high-speed engine and boiler, constituting a complete isolated plant. The building was wired from top to bottom, and equipped with all the appliances of the art. The experience with the little gas-engine was rather startling. “At an early period at `65′ we decided,” says Edison, “to light it up with the Edison system, and put a gas- engine in the cellar, using city gas. One day it was not going very well, and I went down to the man in charge and got exploring around. Finally I opened the pedestal–a storehouse for tools, etc. We had an open lamp, and when we opened the pedestal, it blew the doors off, and blew out the windows, and knocked me down, and the other man.”

For the next four or five years “65” was a veritable beehive, day and night. The routine was very much the same as that at the laboratory, in its utter neglect of the clock. The evenings were not only devoted to the continuance of regular business, but the house was thrown open to the public until late at night, never closing before ten o’clock, so as to give everybody who wished an opportunity to see that great novelty of the time–the incandescent light–whose fame had meanwhile been spreading all over the globe. The first year, 1881, was naturally that which witnessed the greatest rush of visitors; and the building hardly ever closed its doors till midnight. During the day business was carried on under great stress, and Mr. Insull has described how Edison was to be found there trying to lead the life of a man of affairs in the conventional garb of polite society, instead of pursuing inventions and researches in his laboratory. But the disagreeable ordeal could not be dodged. After the experience Edison could never again be tempted to quit his laboratory and work for any length of time; but in this instance there were some advantages attached to the sacrifice, for the crowds of lion-hunters and people seeking business arrangements would only have gone out to Menlo Park; while, on the other hand, the great plans for lighting New York demanded very close personal attention on the spot.

As it was, not only Edison, but all the company’s directors, officers, and employees, were kept busy exhibiting and explaining the light. To the public of that day, when the highest known form of house illuminant was gas, the incandescent lamp, with its ability to burn in any position, its lack of heat so that you could put your hand on the brilliant glass globe; the absence of any vitiating effect on the atmosphere, the obvious safety from fire; the curious fact that you needed no matches to light it, and that it was under absolute control from a distance– these and many other features came as a distinct revelation and marvel, while promising so much